数学最优化问题 这个有点专业哟。这是运筹学中的专业知识。无约束问题是约束问题的一种特殊的形式,所谓的无约束就像把约束条件变为R^n来讨论,有约束的问题只是把约束条件刻画在一个范围。
解决经济分析的最优化问题的基本步骤是什么? 从数学角度看,最优化问题可以分为无约束最优化和约束最优化。所谓无约束最优化问题是比较简单的微分问题,可用微分求解。管理决策问题往往也就是最优化问题,而比较常用和方便的方法就是边际分析法。所谓“无约束”,即产品产量、资源投入量、价格和广告费的支出等都不受限制。在这种情况下,最优化的原则是:边际收入等于边际成本,也就是边际利润为零时,利润最大,此时的业务量为最优业务量。管理决策中的诸多最优化问题,比如投入要素之间如何组合才能使成本最低;企业的产量多大,才能实现利润最大,当因变量为自变量的连续函数时,经济学与数学意义是统一的,可用边际分析法解决;而在处理离散数列的最优化问题时则可以用统计的方法先将离散数列拟合成连续函数,求得最优点,然后在原离散数列中找到离拟合曲线最优点最近的前后两点,比较其值及其投入量,既而求得最优点。有约束条件的最优化包括一个或几个货币、时间、生产能力或其他方面的限制,当存在不等式约束条件时,可以采用线性规划。大多数情况下,管理者知道某些约束是连在一起的,即它们是同样的约束条件,可以采用拉格朗日乘数法解决这些问题。从数学上比较一般的观点来看,所谓最优化问题可以概括为一种数学模型:结合一个。
为什么凸优化这么重要? 看到好多人都在学习凸优化,但是有感觉有多少问题多符合凸优化条件的呢?为什么非得是凸优化这么重要?现…