ZKX's LAB

超薄层材料超晶格有什么特点? 掺杂超晶格

2021-04-23知识4

超晶格量子效应是? 1969年,著名的物理学家江崎与其合作者朱兆祥首次提出了半导体超晶格的新概念,并于1970年首次在砷化镓半导体上制成了超晶格结构,由此揭开了超晶格、量子阱、量子线和量子点微结构等一类低维材料研究的序幕.迄今为止,这一领域的研究已经取得了令世人瞩目的重大进展,在半导体科学技术发展史上写下了光辉灿烂的一页,留下了浓墨重彩的一笔.尤其值得一提的是,美籍华裔科学家崔琦和德国科学家霍斯特·施特默2人,因于1982年发现了具有高电子迁移率的GaAs/AlAs超晶格材料的调制掺杂异质结中的电子,会在超低温和强磁场条件下形成具有某种特异性的量子流体,并在1年之后,由美国科学家罗伯特·劳克林对这一重大发现作出了理论解释,而共同获得了1998年的诺贝尔物理学奖.此后不久,高电子迁移率晶体管(HEMT)就被设计并制作出来了.目前,这种器件已经发展到由多种异质结构材料和各种结构形式制备的具有各种逻辑功能的HEMT大规模集成电路,并初步用于现代通信和计算机系统.这一事实充分显示了半导体超晶格材料在半导体科学技术中所占据的显赫地位。

分子束外延法的概况 从硒整流器诞生以来,真空淀积已广泛应用于半导体薄膜器件的制备上。从40年代起,蒸发铅和锡的硫化物薄膜被广泛研究,直到1964年以前还没有实现优质的外延。1964年Schoolar和Zemel用泻流盒产生的分子束在NaCl上外延生长出PbS薄膜。这也许是现代MBE技术的前奏。直到70年代初期真空设备商品化以后,MBE才得到广泛应用。MBE基本上是真空淀积的一种复杂变种,其复杂程度取决于各个研究工作想要达到的目标。因为是真空淀积,MBE的生长主要由分子束和晶体表面的反应动力学所控制,它同液相外延(LPE)和化学汽相淀积(CVD)等其他技术不同,后两者是在接近于热力学平衡条件下进行的。而MBE是在超高真空环境中进行的,如果配备必需的仪器,就能用许多测试技术对外延生长作在位或原位质量评估。分子束外延的重要阶段性成果就是掺杂超晶格和应变层结构的出现。掺杂超晶格是一种周期性掺杂的半导体结构。通过周期性掺杂的方法来调制半导体的能带结构。掺杂超晶格的有效制备方法是掺杂技术,该技术就是定义在一个原子平面上进行掺杂。在衬底材料生长停止的条件下,生长一个单原子层的掺杂剂,这个单原子层的杂质通过高温工艺或分凝便形成一个掺杂区,因而界面非常陡峭,二维电子气的浓度。

超晶格材料属于什么种类的纳米材料 掺杂超晶格的优点:任何一种半导体2113材料只要很好控制掺杂类型都可以做成超晶格;多层结构的完整性非常好,由5261于掺杂量一般比较小,4102杂质引起的晶格畸变也较小,掺杂超晶格中没有像组分超晶格那样明显的1653异质界面;掺杂超晶格的有效能量版隙可以具有从零到位调制的基体材料能量隙之间的任何值,取决于权各分层厚度和掺杂浓度的选择。

#掺杂超晶格

随机阅读

qrcode
访问手机版