知道正四棱锥棱长,如何求外接圆半径 (仅供参考)如图,AC为正四棱锥棱长,设为b,BC为底面正方形(设边长为a)对角线的一半√2a/2做AC的垂直平分线,则外接圆半径R为AO或OC在直角三角形OBC中,R^2-BC^2=(AB-R)^2很容易得到R
正四棱锥的底边长和棱长都等于a,则它的内切球的半径是 如图所示:正四棱锥P-ABCD的底面边长=a,棱PA=PB=a则,斜高PM=PN=√3a/2,高PO'=√2a/2,△PMN的内切圆就是球大圆,O为球心,切点T在斜高上,由Rt△PTO∽Rt△PO'N可得T0/NO'=PO/PN,即 r/(a/2)=(√2a/2-r)/(√3a/2)求解上式,可得r=(√6-√2)a/4
正四棱锥的外接球半径怎么求 首先要知道球心在正四棱锥的高上,然后考察正四棱锥的高与底面一顶点构成的三角形,在高上找一点,使该点到正四棱锥的顶点与底面一顶点的距离相等,该点就是球心.设正四棱锥的顶点为P,底面一顶点为A,底面中心为O,又设PA=.