光学中球面的曲率半径正负由什么判断 规定是这样的:假设光从左向右传播,以球面和主光轴的交点为准,球面的球心在该点以左,则曲率半径为负,反之,球心在在该点以右,则曲率半径为正。实际就是把球面和主光轴。
关于曲率航行的两种说法哪一种是真的 都是假的
什么是曲率? (小石头来尝试着回答这个问题!关于曲率概念的简要发展历史:早期曲率的概念是伴随着《微积分》一起出现地,它是对于曲线而言的,也是构成经典微分几何中《曲线论》的基石之一;之后,以高斯为主的数学家将 曲线的曲率 引入到曲面中,得到了:法曲率、侧地曲率、高斯曲率 等概念,同时也促成了《曲面论》的诞生;再之后,黎曼将 高斯曲率 等概念 推广到 任意维度的流形中 以 构建《黎曼几何》,从而开启了现代微分几何的大门。接下来,小石头将详细介绍前两个阶段中的曲率。(至于第三个阶段的曲率,由于需要微分流形相关的一系列基础知识,无法在本回答中进行讨论,以后时机成熟时我们再讨论。基于《解析几何》的知识,我们知道,三维空间 R3 的空间曲线,可写成如下参数形式(t∈R):为了方便,仿照空间向量 r=(x,y,z),我们将 曲线的参数方程,改写为:r(t)=(x(t),y(t),z(t))这样,就得到 一个函数 r:R→R3,称这种函数为 向量函数。向量函数 除了自然具有 向量的加法、数乘、模(范数)等运算 外,我们还定义 微积分运算 如下:r'(t)=(x'(t),y'(t),z'(t))r(t)dt=(∫x(t)dt,∫y(t)dt,∫z(t)dt)由《高等数学》的微分知识,我们知道,曲线 r(t)的导数 r'(t)为 。