为什么L不是简单的光滑正向闭曲线 不知道
设u(x,y),v(x,y)是D上的连续可微函数,D是由分段光滑闭曲线围成的平面区域,?D表示其正向边界.证明 证明:由于u(x,y),v(x,y)是D上的连续可微函数,因此uv是D上的连续可微函数由格林公式,得?Duvdy=∫D?(uv)?xdxdy=?D(u?v?x+v?u?x)dxdy即?Du?v?xdxdy=∮?Duvdy-?Dv?u?xdxdy
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分 (I)将C分解为两段:C=l1+l2,另作一条分段光滑简单曲线l3围绕原点且与C相接,则 l1+l3 与 l2+l3 均为过原点的分段光滑简单曲线.则有 I=∮Cφ(y)dx+2xydy2x2+y4=∮l1+l2φ(y)dx+2xydy2x2+y4=∮l1+l3φ(y)dx+2.