相关系数是什么? 相关系数是最2113早由统计学家卡尔·皮尔逊设5261计的统计指标,4102是研究变量之间线性相关程度的量,1653一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。扩展资料依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。参考资料来源:-相关系数
数据的相关系数为-1表示什么? 相关系数说明两个现象之间相关关系密切程度的统计分析指标.相关系数用希腊字母γ表示,γ值的范围在-1和+1之间.γ>0为正相关,γ<0为负相关.γ=0表示不相关;γ的绝对值越大,相关程度越高.两组数据的相关系数如果是负数则表示一组数据增大,另一组数据也反而减小;一组数据减小,另一组数据反而增大.
什么是相关系数 在概率论和统计学中,相关(Correlation,或称相关系数或关联系数),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。拓展资料:相关系数的计算过程可表示为:将每个变量都转化为标准单位,乘积的平均数即为相关系数。两个变量的关系可以直观地用散点图表示,当其紧密地群聚于一条直线的周围时,变量间存在强相关。一个散点图可以用五个统计量来概括。所有x值得平均数,所有x值的SD,所有y值得平均数,所有y值的SD,相关系数r.将第一个变量记为x,第二个变量记为y,相关系数为r,则可以通过以下公式:r=[(以标准单位表示的x)X(以标准单位表示的y)]的平均数