ZKX's LAB

变基线综合孔径 求合成孔径雷达成像的原理~~

2020-07-27知识20

电子侦察卫星如何定位侦察? 电子侦察卫星又称信号情报卫星,信号情报(SIGINT)可以分为通信情报(COMINT)和电子情报(ELINT)。无论是通信情报还是电子情报,辐射源的位置都是一项极其重要的情报信息。电子侦察卫星获取辐射源位置的方法(无源定位)有多种:时差(TDOA)定位,如美国“白云NOSS”卫星;频差(FDOA)定位,如美国的SARSAT采用的方法;测向(DF)定位,如前苏联第1~4代“宇宙”系列电子侦察卫星;混合定位,包括测向/测时差定位、测向/测相位变化率定位、测向/测频定位、时差/频差定位(TDOA/FDOA)等。对某种具体的定位技术体制,按实现方法还可以细分。例如测向定位,按测向实现方法还可以细分为比幅、比相、时差、高分辨率阵列测向定位等。不同的定位技术体制和实现方法在卫星上使用有各自的优缺点。选择无源定位技术体制时,需要综合考虑多项技术指标。首先是定位误差。这是最重要的一项技术指标,定位误差越小越好。需要注意的是定位误差越小付出的代价越大。以相位干涉仪测向定位为例,小的定位误差意味着小的测向误差,它对应着相对大的天线孔径(测向基线长度与信号波长之比),这往往要求增加测向天线阵元数,同时要求卫星平台上天线的安装误差、卫星姿态误差、位置误差、时间同步误差也要相应。什么是射电天文望远镜? 1931年,在美国新泽西州的贝尔实验室里,负责专门搜索和鉴别电话干扰信号的美国人杨斯基发现:有一种每隔23小时56分04秒出现最大值的无线电干扰。经过仔细分析,他在1932年发表的文章中断言:这是来自银河系中射电辐射。由此,杨斯基开创了用射电波研究天体的新纪元。当时他使用的是长30.5米、高3.66米的旋转天线阵,在14.6米波长取得了30度宽的“扇形”方向束。此后,射电望远镜的历史便是不断提高分辨率和灵敏度的历史。自从杨斯基宣布接收到银河系的射电信号后,美国人G·雷伯潜心试制射电望远镜,终于在1937年制造成功。这是一架在第二次世界大战以前全世界独一无二的抛物面型射电望远镜。它的抛物面天线直径为9.45米,在1.87米波长取得了12度的“铅笔形”方向束,并测到了太阳以及其他一些天体发出的无线电波。因此,雷伯被称为是抛物面型射电望远镜的首创者。1946年,英国曼彻斯特大学开始建造直径66.5米的固定抛物面射电望远镜,1955年建成当时世界上最大的76米直径的可转抛物面射电望远镜。与此同时,澳、美、苏、法、荷等国也竞相建造大小不同和形式各异的早期射电望远镜。除了一些直径在10米以下、主要用于观测太阳的设备外﹐还出现了一些直径20~30米的。梅亚尔天文望远镜 射电望远镜(radiotelescope)是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线,放大射电信号的高灵敏度。射电望远镜主要由哪些部分组成? 接收天体射电波的仪器,统称为射电望远镜。射电望远镜通常按天线的结构,分成几个类型:抛物面天线射电望远镜、射电干涉仪、甚长基线干涉仪和综合孔径系统等。射电望远镜主要由定向天线或天线阵、馈电线、高灵敏度接收机和记录仪或示波器组成。天线阵将收集到的天体电波,经过馈电线送到接收机上。这架接收机同日常收音机的原理相似,实质上也是个放大器,它首先将微弱的天体电波高倍放大,再进行检波,让高频能量转变为低频形式,最后送到记录仪器上记录下来,或在示波器上显示出来。为了要确定天体电波的强度,必须加一个强度已知的比较源,如噪声发生器或石墨热源,适当时将比较源讯号输入接收机,以便比较。

#天文#射电望远镜#天线

随机阅读

qrcode
访问手机版