正三棱柱的内切球和外接球的体积之比 求详细解释 最好画图 在线等 正三棱柱有内切球的话2113则正三棱柱的高一定是球的直径5261,此时正4102三棱柱的侧棱长为底面边长的(根号3)/3倍;再看外1653接球令上下的等边三角形边长为a,侧棱长为h 由等边三角形的性质,容易证明三角形几何中心到三角形三顶点的距离:S=(√3)/3 现在想象用一把刀从三棱柱的中间水平切割过去,把三棱柱切成了两个相同的三棱柱 那么新出现的平面的中心到原三棱柱的距离均为√[(h^2)+4*(a^2)/3]{勾股定理} 那么这个点就是外接球心 这个共同距离就是半径由于内切球 h=(根号3)/3a 外接球的半径为根号15/3a面积比(根号15/3)^2:(根号3/3)^2=5:1
如何求正三棱柱的外接球表面积,求方法. 设正三棱柱的底面边长为a,高为h,球半径R,则底面三角形的高为(√3)a/2,于是有:R2=(h/2)2+[(2/3)(√3)a/2)]2,因此外接球的表面积=4/3*πR2可以求出.
正三棱柱外接球半径怎么求,求详细 直三棱柱 正六棱柱外接的半2113径:关键5261是找到各顶点外接球的球心。4102找到了球心,直接连接球心和任1653一顶点就是半径。该球心的就是他们的中心;也是正六棱柱、正三棱柱的重心,但不是直三棱柱的重心。位置在两个底面外接圆的圆心(中心)的连线的中点。所以要先求出两个底面的外接圆的圆心,就很容易找到这两个圆心的连线的中点。底面三角形是正三角形,设棱长为a,底面三角形高为:√3/2a,球心在底面射影是底面三角形的外心(重心),设为M点,AO=2a/3*√3/2=√3a/3,球心为O点,顶点为P点,PM=√a^2-(√3a/3)^2=√6a/3,从O点作ON⊥PA,△PON∽△PAM,a^2/PO*PM,外接球半径R=PO=√6a/4.设AO=DO=R则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3AM=根号(a^2-b^2/3),OM=AM-A0=根号(a^2-b^2/3)-R由DO^2=OM^2+DM^2得,R=根号3倍的a^2÷2倍的根号(3a^2-b^2)内接球半径同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=rAE=根号(a^2-b^2/4)FE=ME=1/3AM=6分之根号3倍的b,AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的bAO=。