为什么要进行方差齐性检验,如何检验? 因为方差齐性检验是方差分析的重要前提,是方差可加性原则应用的一个条件。方差齐性检验的时候,首先需要知道方差齐性检验的本质:样本以及总体的方差的分布是常数,和自变量或者因变量没有关系。然后绘制散点图,在方差齐性检验中,因变量被设置为横轴,纵轴是学生化残差。原因就是,要弄清究竟因变量和残差之间有没有关系。如果残差随机分布在一条穿过零点的水平直线的两侧,就说明残差独立,也就是证明因变量方差齐性。扩展资料齐性检验的基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。常用方法有:Hartley检验、Bartlett检验、修正的Bartlett检验。关于两个或两个以上总体的方差是否相等的统计检验。根据情况不同,有不同的检验方法。在两个总体相互独立且服从正态时,可用F检验;在k个(k>;2)总体相互独立且服从正态时,可用Bartlett检验。在两个相关总体的情形,则不能用F检验,改用t检验;在k个总体的正态性不满足(尤其是偏态)时,Bartlett检验便不合用了,要改为使用一些对正态性不敏感的检验,如对数方差分析、Fmax检验、Cochran检验等。参考资料来源:-齐性检验参考资料来源:。
在方差分析中,一旦拒绝原假设,为什么要进行多重比较检验 若主效应不显著,没有必要做多重比较,因为多重比较的意义是已知主效应显著的情况下看看具体是自变量的哪几个水平间差异显著(因为方差分析一般是3个以上自变量水平间的比较,当然也可以做两水平的,但两水平不存在多重分析)。至少是有两个水平之间有差异,若是主效应都不显著,说明所有水平之间的两两差异都不显著,多重分析的结果一目了然了,不必再做。总偏差平方和 SSt=SSb+SSw。组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>;>;MSw(远远大于)。扩展资料:如果用均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间均方去除组内均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。在观测变量总。
单因素方差分析与卡方检验有什么区别,能否举个例子? 单因素方差分析与卡方检验有什么区别,貌似它们都是可以研究显著性差异?能否举例说明,比如分析不同岗位…