ZKX's LAB

测试技术课后题答案 求截断余弦函数的频谱

2021-04-23知识10

余弦函数f(t)=cos(3t)的傅里叶变换过程 根据欧拉公62616964757a686964616fe4b893e5b19e31333433633437式,cos(3t)=[exp(j3t)+exp(-j3t)]/2。直流信号的傅里叶变换是专2πδ(ω)。根据频移性质可得exp(j3t)的傅里叶变换是2πδ(ω-3)。再根据线性性质,可得cos(3t)=[exp(j3t)+exp(-j3t)]/2的傅里叶变换是πδ(ω-3)+πδ(ω+3)。傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。扩展资料:f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在。

求对称方波的三角函数展开式,并画出频谱图 法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种。

汉明窗与矩形窗频谱的主瓣宽度和旁瓣幅度有何不同 加窗是为了减小泄漏。1、信号截断及能量泄漏效应数字信号处理的主要数学工具是傅里叶变换。应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。周期延拓后的信号与真实信号是不同的,下面从数学的角度来看这种处理带来的误差情况。设有余弦信号x(t)在时域分布为无限长(-∞,∞),将截断信号的谱XT(ω)与原始信号的谱X(ω)相比,它已不是原来的两条谱线,而是两段振荡的连续谱。这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不。

#求截断余弦函数的频谱

随机阅读

qrcode
访问手机版