ZKX's LAB

费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应 费马原理 变分

2020-07-27知识16

费马原理中的变分为0如何理解呢? 题主是大一本科生,数学知识严重不足,但物理中已经学到。请问如何用比较浅显的方法或者角度来理解和使用…请问惠更斯原理和费马原理是什么关系?哪一个更基本和普遍? 本回答采用公众号“sol的马车”,授权转载。原文链接为:镜花水月天上虹(上)你可曾见过天边的彩虹,或…费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应 你习惯于用起因和结果来思考折射:光照到水面上是起因,方向的变化是结果。但费马定理听上去很古怪,因为它以目的的形式来描述光的行为。它就像是光线的指挥官,‘你应该将抵达目的的时间最小化或最大化。假若按人类行为学来说,光得检验每条可能的路线并计算每条得花多少时间,光线得知道目的在哪儿。假如目的地在某某其他地方,最快的路线就会不同,计算沿着一条假想的路线需多长时间也需要关于在这条路线上有什么东西的信息,比如水面在哪?在光开始移动前,它得事先知道所有这一切,光线不能沿着老路前进,然后再在后来返回。因为引起这样行为的路线不是最快的。在一开始光就已经做好了全部的计算在光线能够选择它移动的方向前,它已经知道它最终会在那里结束。光是如何知道哪条路线最快的,费马原理是不是违背常理呢? 科幻小说《你一生的故事》里提到费马原理(Fermat's principle)。又名「最短时间原理」:光线传播的…费马原理的物理意义 费马是法国数学家,<;wbr>;1601年8月17日出生于法国南部图卢兹附近的博蒙·德·<;/wb如何由费马原理推导斯奈尔定律 费马原理有点变分的意思了,需要先给定首位的约束。你要先任意取两个点A、B在不同介知质中,假设光线从A出发穿过水平的界面到B,可以证明满足费马原理的路径(光程之和最小)是道满足斯奈尔定律(入射角反射角关系)证明:假设折射点为C,入射角反射角可以假设i,r。C是满足费马原理的,在C左右变化专位置△x,增加的光程是变化位置的函数(只保留同阶小量),同阶小量系数为0(费马原理要求属的极值),得到i,r的关系即可。费马原理的原理 费马原理(Fermat's principle)最早由法国2113科学家皮埃5261尔·德·费马在1662年提出:4102光传播的路径是光程取1653极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。扩展资料:用微分或变分法可以从费马原理导出以下三个几何光学定律:1、光线在真空中的直线传播。2、光的反射定律-光线在界面上的反射,入射角必须等于出射角。3、光的折射定律(斯涅尔定律)。最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。参考资料来源:-费马原理费马原理说光传播光程为极值,那有没有极大值的例子 光传播的实际路径是使光程取极值(极小值、极大值或稳定值),光程取极值的条件为光程的一阶变分等于零,即此即费马原理的数学表达式。半球面反射: 球面的半径=R,光线从。费马原理说光传播光程为极值,那有没有极大值的例子? 图中蓝色的曲线是一个椭圆,A、B两点为椭圆的焦点,黑色的曲线代表实际的镜面。按照椭圆的定义可以知道任何一条类似红色的光路都会短于黑色的光路,但它们却不满足反射定律。费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应。 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。光的可逆性原理是几何。

#入射角#费马原理

随机阅读

qrcode
访问手机版