选择检验方法前一定需要对数据做正态分布检验吗 如果是两样本的t检验的话一般来说是需要的。但是如果你的样本量很大,那么就算不服从正态分布也可以用t检验。如果是用非参数的检验比如wilcoxon-test之类的,完全不需要。
SPSS之P-P图 验证数据正态分布 P-P图 通过P-P图可以检验数据是否符合指定的分布。当数据符合指定分布时,P-P图中各点近似呈一条直线。在这里我们只做最常用的分布检验—正态分布 首先我们把需要分析的。
最低0.27元开通文库会员,查看完整内容>;原发布者:happywangsi如何检验数据是否服从正态分布一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。以上两种方法以Q-Q图为佳,效率较高。3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。4、箱式图判断方法:观测离群值和中位数。5、茎叶图类似与直方图,但实质不同。二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公636f70793231313335323631343130323136353331333433623736式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0…可以认为…近似服从正态分布”并不严谨。2、非参数检验方法非参数检验方法包括Kolmogorov-。