单因素方差分析与两因素方差分析基本原理有什么不同 单因素方差分析(oneway ANOVA);两因素方差分析(two way ANOVA).单因素方差中只有一个自变量,两因素方差中有两个自变量.举个例:有三种教学方法(A1,A2,A3),我们要检测哪种教学方法最好,这是单因素方差分析,因为只有一个自变量-教学方法(但是有三个水平).如果我们要检测这三种教学方法对不同年纪学生(高年级,低年级)的影响,就是两因素方差分析,因为此时有两个自变量:教学方法(A1,A2,A3)学生年级(B1,B2).两因素方差分析主要检测两个自变量之间的是否有显著的interaction.刚才那个例子是个3X2的两因素方差分析,两个自变量就有6种组合,A1B1,A2B1,A3B1,A1B2,A2B2,A3B2,我们做两因素方差分析就是要检测这六种组合同哪种最显著.
什么是方差分析?简述单因素方差分析的基本思想。 方差分析是检验多个总体均值是否相等的统计方法。它是通过检验各总体的均值是否相等来判断分类型自变量对数值型自变量是否有显著影响。单因素方差分析基本思想:数据的误差即总误差平方和分为组间平方和组内平方和,组内误差只包含随机误差。组间误差包含随机误差和系统误差,系统误差即为因素不同水平造成的误差,如果因素的不同水平对数据没有影响,系统误差为0,组间误差与组内误差经过自由度平均后的数值相比接近于1,反之,如果因素的不同水平对数据有影响,这个比值就会大于1,当它大到某种程度时,就可以说不同水平之间存在着显著差异,也就是自变量对因变量有显著影响
单因素方差分析与多因素方差分析的异同 相同:1.原理都是利用方差比较的方法分析,通过假设检验的过程来判断多个因素是否对因变量产生显著性影响。2.步骤分析的基本步骤相同。a、建立检验假设;b、计算检验统计量F值;c、确定P值并作出推断结果。区别:1.试验指标个数单因素方差分析:1个。多因素方差分析:多于1个。2.适用范围:单因素方差分析:是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。如考察地区差异是否影响妇女的生育率。多因素方差分析:用来研究两个及两个以上控制变量是否对观测变量产生显著影响。分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。扩展资料基本分析之后的进一步分析:1.单因素方差分析:在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。2.多因素方差分析:由分析可知:广告形式与地区的交互作用不显著,先进一步尝试非饱和模型,并进行均值比较分析、交互作用图形分析。a.建立非饱和模型。b.均值比较分析。c.控制变量交互作用的图形分析。参考资料方差分析_多。