ZKX's LAB

求解变量有约束的优化问题 运筹学(最优化理论)如何入门?

2021-04-23知识41

pso的约束优化 约束优化问题的目标是在满足一组线性或非线性约束的条件下,找到使得适应值函数最优的解。对于约束优化问题,需要对原始PSO算法进行改进来处理约束。一种简单的方法是,所有的微粒初始化时都从可行解开始,在更新过程中,仅需记住在可行空间中的位置,抛弃那些不可行解即可。该方法的缺点是对于某些问题,初始的可行解集很难找到。或者,当微粒位置超出可行范围时,可将微粒位置重置为之前找到的最好位置,这种简单的修正就能成功找到一系列Benchmark问题的最优解。Paquet让微粒在运动过程中保持线性约束,从而得到一种可以解决线性约束优化问题的PSO算法。Pulido引入扰动算子和约束处理机制来处理约束优化问题。Park提出一种改进的PSO算法来处理等式约束和不等式约束。另一种简单的方法是使用惩罚函数将约束优化问题转变为无约束优化问题,之后再使用PSO算法来进行求解。Shi将约束优化问题转化为最小—最大问题,并使用两个共同进化的微粒群来对其求解。谭瑛提出一种双微粒群的PSO算法,通过在微粒群间引入目标信息与约束信息项来解决在满足约束条件下求解目标函数的最优化问题。Zavala在PSO算法中引入两个扰动算子,用来解决单目标约束优化问题。第三种方法是采用修复策略,。

如何证明无约束优化问题有最优解 利用最优性条件,即每次迭代后非基变量的检验数,如果求最大问题,:1)当所有非基变量的检验数都小于零,则原问题有唯一最优解;2)当所有非基变量的检验数都小于等于零,注意有等于零的检验数,则有无穷多个最优解;3)当任意一个大于零的非基变。

确定初始基本可行解时,对大于型的约束,应当引入什么变量 2113确定初始基本可行解时,对大5261于型的约束,应当引入人工4102变量。人工变量1653(artificial variable)亦称人造变量,求解线性规划问题时人为加人的变量。用单纯形法求解线性规划问题,都是在具有初始可行基的条件下进行的,但约束方程组的系数矩阵A中所含的单位向量常常不足m个,此时可加人若干(至多m)个新变量,称这些新变量为人工变量。或者这样理解:人工变量是为了凑成单纯形表中的基变量而人工加入的单位向量,在目标函数中系数为-M,最后化简结果中基变量要为0,否则无可行解。化简单纯形表就可以解决,若用对偶单纯形表的话就直接能解单纯形表,不用添加人工变量。

#求解变量有约束的优化问题

随机阅读

qrcode
访问手机版