ZKX's LAB

椭圆上一点到直线距离 怎么求椭圆上一点到直线的距离

2020-07-27知识10

点 在椭圆 上,求点 到直线 的最大距离和最小距离。 ;利用点到直线的距离公式可知,设,则即,当 时,当 时,。结论可知。解:设,则即,当 时,;当 时,。椭圆上的点到直线上的距离怎么求? 先该点做条直线相切与椭圆,直线斜率已知直线样.把设直线方程与椭圆方程放起,去掉Y,得关于X 方程,因相切,用判别式等于0来解出X值,样方程出来了.再用两直线距离公式求出即怎么求椭圆上的点到直线的最大距离? 参数方程/极坐标 8,681 ? 邀请回答 ? 添加评论 ? 2 我还是那个我 5 人赞同了该回答 传统方法是设点,列方程组 这个思路比较简单 。高中数学:求椭圆上一点.该点到椭圆外的一条直线距离最小,除了用点到直线距离公式,还有一种方法是将直线。 方法:若已知直线方程为Ax+By+C1=0,(A,B,C1为常数)1.可设平行于已知直线且与椭圆相切的直线方程为:AX+By+C2=0,(C2为常数)2.联立椭圆方程,消去一个未知数(比如y),得到一个关于x的二次方程;3.令判断式等于0,解出C2的值,(有两个);4.代入关于x的二次方程,求出切点的横坐标,再代入直线方程AX+By+C2=0,求出纵坐标.注:两个解,一个是距离最小的点,一个是距离最大的点.5.若要求出距离,则可用两平行线间的距离公式:d=|C2-C1|/√(A2+B2)椭圆上的点到直线的最大距离怎么求? 帮忙下 拜托 ^椭圆上的2113点可以设成(asint,bcost)点到直线的距5261离公式:|masint+nbcost+k|/根号(4102m^16532+n^2)根号(m^2a^2+n^2b^2)sin(t+w)+k|/根号(m^2+n^2)如果是具体数字最大最小值应该很容易看出来。椭圆上的动点到直线最短距离怎么求 用参数方程x2/a2+y2/b2=1则令x=acosθ,y=bsinθ直线mx+ny+p=0则距离是|amcosθ+bnsinθ+p|/√(m2+n2)=|√(b2n2+a2m2)*sin(θ+ρ)+p|/√(m2+n2)椭圆的参数方程,借助三角函数的有界性求得最值;还可利用直线与椭圆的位置关系求最值,当与已知直线平行的直线与椭圆相切时,切点满足到直线的距离取得最值。扩展资料:质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。参考资料来源:-参数方程怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求椭圆上点到直线距离的最大(小)值,可设椭圆上的点为参数形式,即x'=aCOSθ,y=bSinθ,代入d,用三角函数方法求最值.怎么求椭圆上一点到直线的距离 用参数方程.x=acosθ,y=bsinθ椭圆上一点坐标为(acosθ,bsinθ)利用点到直线距离公式,列出一个关于θ的三角函数关系,用三角函数去算最值在椭圆x216+y29=1上求一点,使它到直线y=x-9的距离最短.根据题意,当与直线y=x-9平行的直线与椭圆相切时,距离最短故可设l方程为:y=x+m代入椭圆x216+y29=1得:25x2+32mx+16m2-144=0 ①0得:(32m)2-4×25×(16m2-144)=0得:m=±5根据题意,取m=-5代入①解得:x=165y=165-5=-95故此点为:(165,-95).椭圆上的点到直线上的距离怎么求? 点到直线的距离。1.直线方程:Ax+By+C=02.坐标:(Xo,Yo)3.公式:│AXo+BYo+C│除以√(A2+B2)连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A2+B2)。点到直线的距离叫做垂线段。过程与方法:1.通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;2.把两条平行直线的距离关系转化为点到直线的距离。怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求知椭圆上点到直道线距离的最大(小)值,可设椭圆上的点为参数形式,即回x'=aCOSθ,y=bSinθ,代入d,用三角答函数方法求最值.

#直线方程#椭圆#数学#椭圆函数

随机阅读

qrcode
访问手机版