ZKX's LAB

碳钠氧硫的负电性最强的是 氢、碳、氧、硫是自然界极为丰富的非金属元素,它们构成了许许多多的化合物.(1)H、O、S电负性由大到小

2021-04-10知识4

氢、碳、氧、硫是自然界极为丰富的非金属元素,它们构成了许许多多的化合物.(1)H、O、S电负性由大到小 (1)同一周期中,元素的电负性随着原子序数的增大而增大,同一主族,元素的电负性随着原子序数的增大而减小,非金属性越强的元素其电负性越大,这三种元素中,非金属性最强的是O,其次是S,最小的是H,所以H、O、S电负性由大到小的顺序是O>S>H,故答案为:O>S>H;(2)根据其图象知,双氧水分子是每个氧原子含有2个共用电子对且含有2个孤电子对,所以其价层电子对数是4,氧原子采用sp3杂化,故答案为:sp3;(3)O元素非金属性较强,对应的氢化物能形成氢键,且与水分子之间也可以形成氢键,硫元素和水分子间不能形成氢键,所以H2O2的沸点比H2S高,故答案为:H2O2分子间存在氢键,与水分子可形成氢键;(4)根据图象知,甲烷分子间靠分子间作用力结合,所以甲烷晶体为分子晶体,而防止晶体熔沸点在常压下很低,且甲烷的相对分子质量很小,分子间作用力很小,所以在常温常压下甲烷以气体形式存在而不能以形成晶体,故答案为:甲烷分子间靠分子间作用力结合,所以甲烷晶体为分子晶体,而防止晶体熔沸点在常压下很低,且甲烷的相对分子质量很小,分子间作用力很小.

N和H的电负性怎么比较 电负性就是吸电子能力大小,周期表从左到右元素非金属e68a843231313335323631343130323136353331333363366131性增强,电负性也增强(氟是最大的),所以电负性是 N>;H。电负性是元素的原子在化合物中吸引电子的能力的标度。元素的电负性越大,表示其原子在化合物中吸引电子的能力越强。又称为相对电负性,简称电负性,也叫电负度。电负性综合考虑了电离能和电子亲合能,首先由莱纳斯·卡尔·鲍林于1932年引入电负性的概念,用来表示两个不同原子间形成化学键时吸引电子能力的相对强弱,是元素的原子在分子中吸引共用电子的能力。通常以希腊字母χ为电负性的符号。鲍林给电负性下的定义为“电负性是元素的原子在化合物中吸引电子能力的标度”。元素电负性数值越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性数值越小,相应原子在化合物中吸引电子的能力越弱(稀有气体原子除外)。一个物理概念,确立概念和建立标度常常是两回事。同一个物理量,标度不同,数值不同。电负性可以通过多种实验的和理论的方法来建立标度。电负性可以理解为元素的非金属性,但二者不完全等价。电负性强调共用电子对偏移方向,而非金属性侧重于电子的得失。一些元素电负性数值如下。

与氢形成氢键的原子为什么要求电负性大 氢键形成条件1、同种分子之间现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有孤电子对并带部分负电荷的F原子有可能充分靠近它,从而产生静电吸引作用。这个静电吸引作用力就是所谓氢键。2、不同种分子之间不仅同种分子之间可以存在氢键,某些不同种分子之间也可能形成氢键。例如 NH3与H2O之间。3、氢键形成的条件⑴ 与电负性很大的原子A 形成强极性键的氢原子。⑵ 较小半径、较大电负性、含孤电子对、带有部分负电荷的原子B(F、O、N)氢键的本质:强极性键(A-H)上的氢核,与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电引力。⑶ 表示氢键结合的通式氢键结合的情况如果写成通式,可用X-H…Y①表示。式中X和Y代表F,O,N等电负性大而原子半径较小的非金属原子。X和Y可以是两种相同的元素,也可以是两种不同的元素。⑷ 对氢键的理解氢键存在虽然很普遍,对它的研究也在逐步636f7079e799bee5baa6e79fa5e9819331333337383864深入,但是人们。

#碳钠氧硫的负电性最强的是

随机阅读

qrcode
访问手机版