为什么椭圆方程会有隐函数?函数不是一一对应的吗? 圆在两个位于X轴的端点处不存在不为0的连续偏导数,所以不能确定隐函数存在,而在其他位置满足隐函数存在定理,上半弧是y=√1-x2,下半弧是y=-√1-x2,并不是你理解的一个x对应两个y
请用几何方法证明 要证是椭圆还不能建系就得用定义证(焦点定义,或是离心率定义)但这两种正法都必须要先确定焦点位置焦点位置是不好确定的于是想了一个取巧的办法1)如果两直线垂直,必定是正圆(斜边中线=斜边一半)2)不是垂直的,把.
为什么椭圆方程会有隐函数?函数不是一一对应的吗? 圆在两个位于X轴的端点处不存在不为0的连续偏导数,所以不能确定隐函数存在,而在其他位置满足隐函数存在定理,上半弧是y=√1-x2,下半弧是y=-√1-x2,并不是你理解的。