ZKX's LAB

帧间差分法的简介 图像差分法做运动估计

2021-04-10知识9

帧间差分法的简介 当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,判断它是否大于阈值来分析视频或图像序列的运动特性,确定图像。

帧间差分法的分法介绍 帧间差分法的优点是:算法实现简单,程序设计复杂度低;对光线等场景变化不太敏感,能够适应各种动态环境,稳定性较好。其缺点是:不能提取出对象的完整区域,只能提取出边界;同时依赖于选择的帧间时间间隔。对快速运动的物体,需要选择较小的时间间隔,如果选择不合适,当物体在前后两帧中没有重叠时,会被检测为两个分开的物体:而对慢速运动的物体,应该选择较大的时间差,如果时间选择不适当,当物体在前后两帧中几乎完全重叠时,则检测不到物体。鉴于背景差分法和帧间差分法的优缺点,我们将这两种方法结合起来,使它们优势互补,从而克服相互的弱点,提高运动检测的效果。但是在实际的场景中,即便是室内环境,也存在光线等各种变化造成的干扰,或者人为造成的开灯等光线的强烈变化。所以在背景差分法的实现中,它的固定背景不能一成不变。如果不进行重新初始化,错误的检测结果将随时间不断累计,造成恶性循环,从而造成监控失效。因此,我们在提出检测算法的同时,要建立背景更新模型。保证背景图像能随着光线的变化而变化,确保检测的准确性。提出新算法的思想在视频图像序列中,利用已有的背景差分法和帧间差分法作为启示,将动态图像中连续两帧差图像。

为什么帧间差分法提取出的是轮廓 帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,判断它是否大于阈值来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。图像序列逐帧的差分,相当于对图像序列进行了时域下的高通滤波。

#图像差分法做运动估计

qrcode
访问手机版