ZKX's LAB

高数里面定积分在求不出被积函数的原函数的情况下.该怎么求解? 定积分求不出原函数的怎么办

2021-04-09知识6

高数里面定积分在求不出被积函数的原函数的情况下.该怎么求解? 定积分不一定需要全都运用牛顿莱布尼茨公式(当然有的也用不了),有的可以用含参变量积分,或者复变中的留数定理来求。

积分求不出原函数,应该怎么解决 可以求出,重积分问题而已

关于定积分,连续必有原函数,那么是不是不连续一定没有原函数,为什么?举例说明 不是。做一个周期函数f(x)这个函数在x=nT(n=0,1,2,.)间断,所以不是定义在整个区间上的连续函数(存在间断点),但是分段连续,所以是可积函数。而且任何一个区间的定积分,都表为那些带状区域的面积。事实上,可积的充分必要条件是,函数的大小和之差的极限存在且为零。而非连续。换言之,连续必可积,反之则不然—逆定理不成立。

随机阅读

qrcode
访问手机版