正三棱柱的外接球的半径怎么求 非常简bai单啊!令正三棱du柱底边长为a,高为h上下两底面zhi的对称截面dao也为边长为a的等边三角形回答该截面的等边三角形的重心O到对称面顶点的距离为(√3/2)a2/3(√3/3)a对称面的重心O也是正三棱柱的重心外接球半径:r该重心O到底面顶点的距离{[(√3/3)a]2(h/2)2}{a2/3h2/4}(12a2+9h2)6
正三棱柱的外接球的半径怎么求? ^r=√[(√3/3a)^21132+(h/2)^2]。正三棱柱的外接球:球心5261为上4102下底面中心连线中点。半径为球心与顶点的连线。设侧棱=h,底1653面边长为a,底面中心到底面顶点的距离d=√3/3a。r=√[(√3/3a)^2+(h/2)^2]扩展资料正三棱柱的上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的棱柱,并且上下底面的中心连线与底面垂直,也就是侧面与底面垂直。(正三棱柱含于直三棱柱,即正三棱柱是底面是正三角形的直三棱柱)正三棱柱不一定有内切球:若正三棱柱有内切球,则正三棱柱的高一定是球的直径,此时正三棱柱的棱长为底面边长的(根号3)/3倍;正三棱柱一定有外接球:但直径一定不是正三棱柱的高,直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长。
正三棱柱的外接球半径公式 正三棱2113柱的外接球:球心为上下底面5261中心连线中点半径为球心与顶点的连线4102设侧棱=h底面边长为a 底面中心到底面顶点的距离d=√3/3ar=√[(√3/3a)^2+(h/2)^2]扩展资料:正三棱柱一定有外接球:但直径一定不是正三棱柱的高,直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底1653面边长。正三棱柱正三棱柱附注:正三棱柱的外接球半径求解过程令上下的等边三角形边长为a,侧棱长为h由等边三角形的性质,容易证明三角形几何中心到三角形三顶点的距离:S=(√3)/3想象用一把刀从三棱柱的中间水平切割过去,把三棱柱切成了两个相同的三棱柱那么新出现的平面的中心到原三棱柱的距离均为√[(h^2)+4*(a^2)/3]{勾股定理}那么这个点就是外接球心 这个共同距离就是半径体积为:V=SH参考资料来源:-正三棱柱