考研数学一会考伯努利方程吗? 我看历史没出过题的样子。2 人赞同了该回答 数学(一)的考试内容是高等数学(约56%)、线性代数(约22%)、概率论与数理统计(约22%)。高 等 数 学 。
在统计学中的样本量是如何计算的,置信度是如何计算的? 您好!样本量的计2113算公式为:N=Z 2×(P×(1-P))/EZ为置信5261区间、4102n为样本容量、d为抽样误差范围、1653σ为标准差,一般取0.5。E:样本均值的标准差乘以z值,即总的误差p:目标总体占总体的比例。(比如:一个班级中男生占所有学生的30%。则p=30%)。置信度是自己给的前提,不是算出来的。比如:每个样子在95%的置信度下的置信区间。就是用一种方法构造一百个区间如果有95个区间包含总体真值,就说置信度为95%(包含总 体真值的区占总区间的95%)。扩展资料误差值:是指由于随机抽样的偶然因素使样本各单 位的结构不足以代表总体各单位的结构,而引起抽样 指标和全及指标之间的绝对离差.因此,又 称为随机 误差,它不包括登记误差,也不包括系统性误差。影响抽样误差的因素:总体各单位标志值的差异程度;样本的单位数;抽样的方法;抽样调查的组织形式。抽样平均误差:抽样平均误差是反映抽样误差一般水平的指标,它的实质含义是指抽样平均数(或成数)的标准差.即它反映了抽样指标与总体指标的平均离差程度.抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小.平均误差大,说明样本指标对总体指标的代表性低;反之,则高。置信区间:是指由样本统计量所构造的总体。
三个版本的《巴塞尔协议》有什么区别? 总结如下:巴塞尔协议1-里程碑式的突破1988年制定的巴塞尔协议1,是金融监管资本发展史上的一个里程碑式…