椭圆积分的椭圆积分 除下面给出的形式之外,椭圆积分也可以表达为勒让德形式和Carlson对称形式。通过对施瓦茨-克里斯托费尔映射的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数是作为。
模形式是什么?看《费马大定理》时对里面的一个数学用语不解 模形式研究在某种变换群下具有某种不变性质的解析函数。它从19世纪中叶至今的发生与发展,反映了经典数论向。
现在数学系都不学椭圆函数、超几何函数了,为什么? 想想数学专e5a48de588b63231313335323631343130323136353331333436316239业大学四年要学习20多门数学!数学分析,高等代数,解析几何,复变函数,实变函数,概率论与数理统计,拓扑学,离散数学,MATLAB,随机过程,偏微分方程,泛函分析…,一把辛酸泪啊!泛函分析是大学数学系的一门重要课程,其与抽象代数、拓扑学并称为\"新三高\".很显然的是,\"老三高\"成员中数学分析、高等代数和高等几何已经逐渐不能满足现代数学的发展需要,逐渐被\"新三高\"取而代之,颇有种\"长江后浪拍前浪,前浪死在沙滩上\"的意味。我们都知道椭圆的面积S=πab,但是椭圆的周长就没那么简单了。椭圆函数是在求椭圆弧长时出现的椭圆积分的逆函数。它在复平面上有双周期性。什么是双周期性?想象一个铺满了整个平面直角坐标系的蛋糕~?我们想把它切成若干小块,每人一块,我们可以切一个给定大小的正方形,四个顶点分别为原点(0,0),(1,0),(0,i),(1,i),然后我们在这个正方形的上下左右再切四个一模一样的正方形,使得他们分别与第一个正方形共用一条边,一直这么切下去。所谓的双周期性就是在每一小块蛋糕都是一样的。这些正方形的顶点位置并不重要,你可以从任意位置开始切。双周期并。