圆柱坐标系中的3个参数r,θ,z分别表示什么 ρ,φ,z分别表示在圆柱坐标系中的一点,在平面上的投影到坐标原点的距离,投影点的方位角(也就是在投影在平面极坐标系中的位置)以及该点离原点所在平面的距离。
流体连续性方程在圆柱坐标系下的形式怎么推导? 流体连续方程里边的时间微分不变.就是里边有一个算子div=(d/dx,d/dy,d/dz)*这个算子直接作用在直角坐标下的向量v的三个分量上V1,V2,V3然后推导d/dx在圆柱坐标下的形式(x,y,z)-(r,p,z)p代表圆柱坐标下的角度phid/dx=(dr/dx)*d/dr+(dp/dx)*d/dr+(dz/dx)*d/drcosp*d/dr-sinp/r*d/dr+0类似的,变换d/dy,但是d/dz是不变的然后,上边使用的v1v2v3都是直角坐标下的分量,给它们变到圆柱坐标下,用线性代数的知识,这个需要行列,在这里没法写.最后把变换后的算子和速度向量点乘并整理化简,就行了.