求数学物理方程(第三版)【 谷超豪 李大潜 陈恕行 谭永基 编著 】的课后习题答案。 你没有留邮箱呀。可以尝试自己下载,具体方法:在上输入:爱问共享资料点击进去,数学物理方程(第三版),就会看到你想要的pdf格式的答案。
数学物理方程(谷超豪) 第三章 调和方程习题解答 去文库,查看完整内容>;内容来自用户:化水石第三章1建立方调程62616964757a686964616fe59b9ee7ad9431333433646364和定解方条程件1.设u(x1,x2,L,xn)=f(r)(r=22x1+L+xn)是n维调和函数(即满足方程?2u2?x1L+?2u2?xn0),试证明c2f(r)=c1+rn?21r(n≠2)(n=2)f(r)=c1+c2In其中c1,c2为常数。证:u=f(r),?2u?xi2nx?u?r=f'(r)?=f'(r)?i?xi?xirf\"(r)?nxi2xi21''+f(r)??f(r)?rr2r3?x2i=1i?u2f\"(r)?i=12rxi2f'(r)?n?f'(r)?i=13rrxi2nf\"(r)+n?1'f(r)r即方程?u=0化为f\"(r)+f\"(r)f'(r)=?n?1'f(r)=0rn?1r所以若n≠2,积分得f'(r)=A1r?(n?1)f(r)=A1r?n+2+c1?n+2即n≠2,则f(r)=c1+f'(r)=A1rrn?2故c2若n=2,则即n=2,则f(r)=c1+A1Inr1rf(r)=c1+c2In2.证明拉普拉斯算子在球面坐标(r,θ,?)下,可以写成?u=01r2??2?u1??u1?2u(r)+2?(sinθ)+2??r?r?θrsinθ?θrsin2θ??2证:球坐标(r,θ,?)与直角坐标(x,y,z)的关系:x=rsinθcos?,y=rsinθsin?,z=rcosθ?u=
可不可以发一份 数学物理方程 谷超豪 第三版答案,给我,快考试了,急用吗,谢谢! 第一章 波动方程§1 方程的导出。定解条件 1细杆或弹簧受某种外界原因而产生纵向振动以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移假设振动过程发生的张力服从虎克定律试证明),(txu满足方程 xuExtuxt 其中为杆的密度E为杨氏模量。证在杆上任取一段其中两端于静止时的坐标分别为 x与xx。现在计算这段杆在时刻t的相对伸长。在时刻t这段杆两端的坐标分别为),();(txxuxxtxux 其相对伸长等于),()],([)],([txxuxxtxuxtxxuxxx 令0x取极限得在点x的相对伸长为xu),(tx。由虎克定律张力),(txT等于),()(),(txuxEtxTx 其中)(xE是在点x的杨氏模量。设杆的横截面面积为),(xS则作用在杆段),(xxx两端的力分别为 xuxSxE)()(xuxxSxxEtx)()();().,(txx 于是得运动方程 ttuxxsx)()(xESutx),(xxxxxESuxx|)(|)( 利用微分中值定理消去x再令0x得 ttuxsx)()(xxESu()若)(xs常量则得 22)(tux=))((xuxEx 即得所证。2在杆纵向振动时假设(1)端点固定(2)端点自由(3)。