ZKX's LAB

最优化计算方法的目录 一维无约束优化有哪些方法

2021-04-09知识26

Python如何解决非线性规划问题?有没有像matlab中的fmincon的函数一样方便的库? 原文链接:https:// zhuanlan.zhihu.com/p/10 1645294 如前位答者所说,Python中的SciPy库可以用来解决非线性规划问题。我们在这里提供一些实例,讲解如何使用SciPy的。

最优化计算方法的目录 第一篇 线性规划第1章 线性规划的数学模型和基本性质1.1 线性规划问题及其数学模型1.1.1 问题的提出1.1.2 线性规划问题的数学模型1.2 线性规划问题的图解法1.2.1 图解法的步骤1.2.2 线性规划问题求解的几种可能结果1.3 线性规划的基本性质1.3.1 线性规划的基本概念1.3.2 凸集与凸集的顶点1.3.3 线性规划的基本定理习题第2章 单纯形法2.1 单纯形法的原理2.1.1 确定初始基本可行解2.1.2 最优性检验和解的判别2.1.3 从一个基本可行解转换到相邻且改善了的基本可行解2.2 单纯形法的计算步骤2.3 人工变量的处理方法2.3.1 大M法2.3.2 两阶段法2.4 单纯形法的有限终止性2.5 改进单纯形法2.5.1 单纯形法的矩阵描述2.5.2 改进单纯形法习题第3章 线性规划的对偶理论3.1 线性规划的对偶问题3.1.1 对偶问题的提出3.1.2 原问题与对偶问题之间的对偶关系3.2 对偶性定理3.3 对偶单纯形法3.3.1 对偶单纯形法的基本思路3.3.2 对偶单纯形法的计算步骤3.3.3 初始对偶基本可行解的求法习题第4章 灵敏度分析和参数线性规划4.1 灵敏度分析4.1.1 参数cj的灵敏度分析4.1.2 参数6i的灵敏度分析4.1.3 约束条件的系数列向量Ak的灵敏度分析4.1.4 增加。

如何理解拉格朗日乘子法? 谢邀。拉格朗日乘数法(Lagrange multiplier)有很直观的几何意义。举个2维的例子来说明:假设有自变量x…

#一维无约束优化有哪些方法

随机阅读

qrcode
访问手机版