求《数学物理方程》谷超豪的第三版课后习题答案,注意是第三版,别拿第二版蒙我,我能对出来 俺得姳字
数学物理方程(谷超豪) 第三章 调和方程习题解答 去文库,查看完整内容>;内容来自用户:化水石第三章1建立方调程62616964757a686964616fe59b9ee7ad9431333433646364和定解方条程件1.设u(x1,x2,L,xn)=f(r)(r=22x1+L+xn)是n维调和函数(即满足方程?2u2?x1L+?2u2?xn0),试证明c2f(r)=c1+rn?21r(n≠2)(n=2)f(r)=c1+c2In其中c1,c2为常数。证:u=f(r),?2u?xi2nx?u?r=f'(r)?=f'(r)?i?xi?xirf\"(r)?nxi2xi21''+f(r)??f(r)?rr2r3?x2i=1i?u2f\"(r)?i=12rxi2f'(r)?n?f'(r)?i=13rrxi2nf\"(r)+n?1'f(r)r即方程?u=0化为f\"(r)+f\"(r)f'(r)=?n?1'f(r)=0rn?1r所以若n≠2,积分得f'(r)=A1r?(n?1)f(r)=A1r?n+2+c1?n+2即n≠2,则f(r)=c1+f'(r)=A1rrn?2故c2若n=2,则即n=2,则f(r)=c1+A1Inr1rf(r)=c1+c2In2.证明拉普拉斯算子在球面坐标(r,θ,?)下,可以写成?u=01r2??2?u1??u1?2u(r)+2?(sinθ)+2??r?r?θrsinθ?θrsin2θ??2证:球坐标(r,θ,?)与直角坐标(x,y,z)的关系:x=rsinθcos?,y=rsinθsin?,z=rcosθ?u=
数学物理方程(第二版)习题答案 谷超豪等编的 http://www.ezkaoyan.com/HTML/paper/230/10982.htm