非正态分布的参数估计和假设检验 如果Χ^2
统计学中的假设检验为什么都是基于正态分布的,如果不是正态分布的又该如何检验呢 基于正太分布的原因是 大自然界中的多数自然现象或者日常的多数数据都是符合正态分布的,也就是类似一个倒U曲线.当然也有不是正态分布的现象,比如投硬币的数据,就是一个二元分布,比如化学中一些元素的放射性 这些都是非正态分布,自然有对应的不同的统计方法
两个独立样本t检验,如果样本非正态分布怎么办?用spss 1.通过F检验可以看到方差是否相等,你说的对的,看第二行2.样本标准差可以使用描述统计中的功能来计算,例如descpritive statistics3.如果样本数量30以上,可以当作正态分布.如果是小样本的话使用t检验即可.可以不管是否伪正态分布,如果不放心的话使用one sample k-s检验,检验总体是否为正态,p