数学 请问什么是光滑曲线? 你应该是高中生吧?各个领域的光滑曲线解释不一样。高等数学微积分这块的定义是:若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线。高中生的话可以理解为曲线每一点都存在切线。不是任意曲线都存在切线,是光滑曲线才每一点都存在切线。这涉及到曲线的定义。高中接触到的曲线都是光滑的,所以在你看来都是任一点都是有切线的。到以后你会慢慢发现的。切点的移动切线不停转动。就是切点慢慢变动,切线斜率慢慢变大或者变小。比如x的平方这个函数,在0的右边,从0开始,切线斜率为0,越往左,斜率越大,角度越大,这样就是转动。如果你是大学生的话可以给你举个例子。f(x)=x^2*sin(1/x),f(0)=0。f处处可导,但导数在0点不连续。换句话说,曲线(x,f(x))在原点不光滑。
怎么理解光滑曲线的定义? 这就相当于一个函数f在某一点可导,但是导数不连续。这样的函数或者说曲线是存在的,但不是常见函数,需要特别构造出来。例如f(x)=x^2*sin(1/x),f(0)=0。f处处可导,但导数在0点不连续。换句话说,曲线(x,f(x))在原点不光滑。y=|x|在x=0就连续,不光滑
光滑曲线一定是连续的吗? 光滑的曲线看你的出发点是在哪了?如果是出发点是从一点出发的话,那么可能是他。连续的有可能是不连续的,例如在一三象限里面出现的平滑的曲线,那么他们就不是连续的,而。