ZKX's LAB

一个最优化c++程序 约束最优化内点法

2021-04-08知识5

内点法的基本原理以及举例计算 最低0.27元开通文库会员,查看完整内容>;原发布者:yangying435一、内点法1.基本原理内点法的特点是将构造的新的无约束目标函数—惩罚函数定义在可行域内,并在可行域内求惩罚函数的极值点,即求解无约束问题时的探索点总是在可行域内部,这样,在求解内点惩罚函数的序列无约束优化问题的过程中,所求得的系列无约束优化问题的解总是可行解,从而在可行域内部逐步逼近原约束优化问题的最优解。内点法是求解不等式约束最优化问题的一种十分有效方法,但不能处理等式约束。因为构造的内点惩罚函数是定义在可行域内的函数,而等式约束优化问题不存在可行域空间,因此,内点法不能用来求解等式约束优化问题。对于目标函数为mins.t.(32313133353236313431303231363533e59b9ee7ad9431333433623766u=1,2,3,…m)的最优化问题,利用内点法进行求解时,构造惩罚函数的一般表达式为或者而对于受约束于的最优化问题,其惩罚函数的一般形式为或式中,-惩罚因子,是递减的正数序列,即通常取。上述惩罚函数表达式的右边第二项,称为惩罚项,有时还称为障碍项。说明:当迭代点在可行域内部时,有(=1,2,3,4,…m),而,则惩罚项恒为正值,当设计点由可行域内部向约束边界移动时,惩罚项。

运筹学(最优化理论)如何入门? https://www. math.ucla.edu/~tom/LP.p df Numerical Optimization,西北大学和美国阿贡实验室 著(他引2w次): http://www. bioinfo.org.cn/~wangcha o/maa/Numerical_。

分别用内点惩罚函数法和外点惩罚函数法求解下列约束优化问题(用matlab编程) function main()clc;clear all;close all;options=optimset('Algorithm','interior-point','Display','off');if exitflag=1fprintf('\\n利用内copy点法:2113\\n')x(1),x(2),fval);elsefprintf('\\n未找到最优解!1653\\n');endfunction f=net_fun(x)f=x(1)^2+x(2)^2;for k=1:100%外点法e迭代循62616964757a686964616fe4b893e5b19e31333433633532环.x1=a(k);x2=b(k);e=m(k);for n=1:100%梯度法求最优值。f1=subs(fx1);求解梯度值和海森矩阵f2=subs(fx2);f11=subs(fx1x1);f12=subs(fx1x2);f21=subs(fx2x1);f22=subs(fx2x2);if(double(sqrt(f1^2+f2^2)))%最优值收敛条件a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f));扩展资料:根据约束的特点,构造某种惩罚函数,然后加到目标函数中去,将约束问题求解转化为一系列的无约束问题。这种“惩罚策略”,对于无约束问题求解过程中的那些企图违反约束条件的目标点给予惩罚。通过上述方法,可以把有约束的问题化为无约束问题求解。也就是所谓的外罚函数法。但是外罚函数的原理主要是应用了近似最优并且近似可行的,近似最优可以接受,但是近似可行在实际运用中让人无法接受。这一点可以由内罚函数解决。

#约束最优化内点法

随机阅读

qrcode
访问手机版