世界数学史上有哪些人在圆周率上做出了突出贡献
圆周率是谁最先计算出来的? 世界公认:中国南北朝时期的著名数学家祖冲之;古今中外,许多人致力于圆周率的研究与计算.为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血.十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新.整个十九世纪,可以说是圆周率的手工计算量最大的世纪.进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进.借助于超级计算机,人们已经得到了圆周率的2061亿位精度.历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位.可惜,后人发现,他从第528位开始就算错了.把圆周率的数值算得这么精确,实际意义并不大.现代科技领域使用的圆周率值,有十几位已经足够了.如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一.以前的人计算圆周率,是要探究圆周率是否循环小数.自从1761年Lambert证明了圆周率是无理数,1882年Lindemann。
圆周率是谁发明的 历史上圆周率的发明人是谁 圆周率62616964757a686964616fe78988e69d8331333431373232是一个概念,一个定义,不存在由谁发明的问题。而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。汉朝时,张衡得出π2除以16约等于8分之5,即π约等于根号十(约为3.162)。这个值不太准确,但它简单易理解。中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927除以1250约等于3.1416。数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,密率是个很好的分数近似值,要取到52163除以16604才能得出比355除以113略准确的近似,在之后的800年里祖冲之计算出的π值都是最准确的。扩展资料:2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。1965年,英国数学家约翰·沃利斯(John Wallis)。