三棱柱的内切球半径怎么求? 内切圆圆心为异面两棱中点连线MN的中点O,半径为点O到平面BCD的距离OG的长度,设棱长AB为a,则NB=a/2,OM=根号2/4,由△MOG∽MBN得OG/BN=MO/MB。扩展资料性质:1、底面是等边三角形。2、侧面是三个全等的等腰三角形。3、顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。4、斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)5、高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)6、高、侧棱、侧棱射影构成的直角三角形;(含侧棱与底面夹角)7、斜高射影、侧棱射影、底边的一半构成的直角三角形。
正三棱柱的外接球的半径怎么求 底面三角形是正三角形,设棱长为a,底面三角形高为:√3/2a,球心在底面射影是底面三角形的外心(重心),设为M点,AO=2a/3*√3/2=√3a/3,球心为O点,顶点为P点,PM=√a^2-(√3a/3)^2=√6a/3,从O点作ON⊥PA,△PON∽△PAM,a^2/PO*PM,外接球半径R=PO=√6a/4.
正三棱柱的内切球与外接球的球半径关系 设正三棱柱的内切球半径为r,则正三棱柱的外接球半径R=√[(r^2+(2r)^2]=(√5)r故内切球与外接球的球半径之比为1:√5