ZKX's LAB

多元函数在定义域连续 二元初等函数的定义域与定义区域有什么区别?谢谢啦.

2020-07-26知识10

二元初等函数的定义域与定义区域有什么区别?谢谢啦. 首先,二元函数的定义区域是指满足区域条件的定义域,即,该(部分)定义域构成区域,这需要看一看区域的定义,简单说,二元函数的定义域可以是几个孤立的平面上的点,这样的定义域就不构成区域,从而也就不是定义区域,所谓区域,在概念上应该至少是成片儿的.由此也就可以理解“为什么说二元初等函数在其定义域未必连续却一定在定义区域连续了”:一个只在几个孤立的点上有定义的二元函数明显是间断的,相关的情况在一元函数的结论是:“一元初等函数在其定义域未必连续却一定在定义区间连续”,可以借助一元函数的情况来理解.所有基本初等函数在其定义域内都是连续的,这句话对吗 所有基本初等函2113数在其定义域内都是连续的,这句5261话是对的。连续函4102数的其他性质:1、在某点连续的有限个1653函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。扩展资料:连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>;0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<;δ时,有|f(x1)-f(x2)|<;ε,就称f(x)在I上是一致连续的。高数:一切多元初等函数在其定义区域内是连续的.不理解呢,怎么会是连续的,如果这样岂不是没有间断点 首先,几个基本初等函数,如三角函数,指数函数,对数函数,幂函数这些函数在其定义域内是连续的,这点毋庸置疑.其次,初等函数是指基本初等函数经过有限次加减乘除,乘方,开方,复合所得到的函数,在其定义域内当然是连续的,但是在定义域外仍然有可能存在间断点.一切初等函数在其定义域内都是连续的,这句话为什么是错误的? “初等函数在其定义区间内是连续的”这句话是对的,定义域可以是人为改变的,比如说我强制规定初等函数y=x的定义域为x=1与x=2这两个点,那么显然在这两点处离散,也就是不连续多元函数的连续、偏导存在存在和可微之间有什么关系 二元函数连续、偏导数存在、可微之间的关系1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。4、可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。上面的4个结论在多元函数中也成立一个多元函数在定义域内连续,那么他的一阶偏导(偏导存在)也连续吗? 不一定,比如 y=-x(x时)y=x(x>;0时)在x=0时的左右导数不相等如何证明一个函数在其定义域是连续的 理论上,证明在定义域的开区间任意一点x0有x→x0limf(x)=f(x0).闭区间还需要证明在端点处单侧连续。实际上,如果题目没有要求用连续的定义证明。那么,指出这个函数是初等函数,所以连续。因为“一切初等函数在其定义域上是连续的。如果是分段函数,还要单独考察在分段点处的连续性。

随机阅读

qrcode
访问手机版