logistic回归是不是要求自变量符合正态分布?? 没有这个要求。logistic回归只要求自变量和Logistic概率是线性关系。Logistic回归实质是发生概率除以没有发生概率再取对数。就是这个不太繁琐的变换改变了取值区间的矛盾和因变量自变量间的曲线关系。究其原因,是发生和未发生的概率成为了比值,这个比值就是一个缓冲,将取值范围扩大,再进行对数变换,整个因变量改变。不仅如此,这种变换往往使得因变量和自变量之间呈线性关系,这是根据大量实践而总结。所以,Logistic回归从根本上解决因变量要不是连续变量怎么办的问题。还有,Logistic应用广泛的原因是许多现实问题跟它的模型吻合。例如一件事情是否发生跟其他数值型自变量的关系。扩展资料:主要用途1、寻找危险因素正如上面所说的寻找某一疾病的危险因素等。2、预测如果已经建立了logistic回归模型,则可以根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大。3、判别实际上跟预测有些类似,也是根据logistic模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。这是logistic回归最常用的三个用途,实际中的logistic回归用途是极为广泛的,logistic回归几乎已经成了流行病学和医学中最。
spss如何检验残差是否符合正态分布,?在做回归的时候,残差的分布必须是正态分布,否则就会使得得到的回归方程没有任何实际的意义。在检验残差的分布是否为正态的时候,。
一元性回归分析中自变量和因变量也必须是服从正态的么?如果因变量不服从怎么办?还可以用什么线性回归分析呢?