基础代数问题 设G为群 H为G的子群 H在G中指数为2 求证H必为G的正规子群 只要证明Ha=aH即可,其中a不属于H,因为H在G中的指数为2,所以Ha,aH都是G的不同于H的子群,所以必有Ha=aH成立.证毕.pH值是否存在负值以及大于14的值 pH可以小于0也可以大于14,但是请注意,用pH表示溶液的氢离子浓度到底有什么意义呢?高中课本上说:“我们经常要用到一些c(H+)很小的溶液,如c(H+)为1×10^-7mol/L的溶液,c(H+)为1.34×10^-3mol/L的溶液,等等.用这样的量来表示溶液的酸碱性的强弱很不方便.为此化学上常采用pH表示溶液酸碱性的强弱:pH=-lg{c(H+)}”.可见用氢离子浓度的负(常用)对数来表示溶液的酸碱性是在c(H+)浓度很小的时候为了方便而采用的.通过计算可知,c(H+)达到1mol/L(即1×10^0mol/L)时,pH=0,而达到1×10^-14mol/L时(或c(OH-)达到1mol/L),pH=14,所以,当c(H+)大于1mol/L时,pH就为负值,例如c(H+)=2mol/L时,pH≈-0.3,c(H+)=10mol/L时(很浓了),pH=-1,c(OH-)=10mol/L时,pH=15.浓度为2mol/L的H2SO4溶液,由于完全电离,所以c(H+)就是2mol/L,其pH就是-0.3,若其浓度增至10mol/L,pH仅跨过1个数量级,这时用pH表示c(H+)就没有那么大的必要了,所以,当溶液中的c(H+)大于1mol/L的时候,就直接用物质的量浓度来表示,而不用pH来表示,综上,pH只是为了方便表示c(H+)浓度很小的溶液,而且一般的溶液c(H+)都很小,所以用pH表示氢离子浓度在生产和生活中十分实用.可以通过98%H2SO4的密度来计算其物质的量浓度,大约是18.4mol/L,但是其c设G是一个群,H,K是G的子群且H在G中的指数有限,求证:K∩H在K中的指数也有限 利用已知的条件[G:H]有限,证明[K:(K交H)][G:H]:令A={k(K交H)|k属于K},B={aH|a属于G},令f:k(K交H)—>kH,则f显然是A到B的映射,现证明f为单射:令k1H=k2H,则k1^(-1)k2属于H,所以k1^(-1)k2属于K交H,所以k2(K交H)=k1(k1^(-1)k2)(K交H)=k1(K交H),所以f是单射,所以|A||B|从而[K:(K交H)][G:H],所以[K:(K交H)]有限还有大神给出直接做陪集分解的方法,设K=k1(K交H)∪k2(K交H)∪…为K的左陪集分解若k1H=k2H,则k1^(-1)k2属于K交H,所以k1=k2所以若k1不等于k2则k1H与k2H交为空集从而k1H、k2H、…均包含在G的左陪集分解式中,所以[K:(K交H)][G:H]N是G的正规子群,H是G的子群,H关于G的指数与N的阶互素,证明N是H的正规子群 设H是G的n阶子群,任取G中一个元素g,如下集合H(g)={ghg^(-1)|h属于H}现在证明H(g)是G的子群.任取gh1g^-1,gh2g^-1属于H(g)则,gh1g^-1*(gh2g^-1)^-1=g(h1h2^-1)g^-1因为h1h2^-1属于H,所以g(h1h2^-1)g^-1属于H(g)所以H(g)是G的子群.且由消去律知道gh1g^-1=gh2g^-1可以推出h1=h2所以|H(g)|=n 又因为H是G中唯一的n阶子群,所以H(g)=H即任取g属于G 任取h属于H 有 ghg^-1属于H 所以H是G的正规子群容易验证gH和Hg都是G的n阶子群,但是G得n阶子群只有一个所以有gH=Hg=H,所以H是G的正规子群一个群论问题 [找到了一个简单的做法,居然没想到…]设[H:G]=r,且t(1),.,t(r)是H在G中的一组右陪集代表元,其中t(1)=e.任取G中元素g,任取一个i(1≤i≤r),则存在唯一的j(记作g(i)),使得H*t(i)*g=H*t(j)从而存在唯一H中的元.N是G的正规子群,H是G的子群,H关于G的指数与N的阶互素,证明N是H的正规子群。 求大神做一下! 共1个回答 首先,([G:H],N|)=1可以推出: 存在整数a,b,使得 a|G|/|H|+b|N|=1 所以a|G|+b|N|*|H|=|H|…(△) 其次,因为N是正规子群,所以NH=HN是G的子群,并且 基础代数问题 设G为群 H为G的子群 H在G中指数为2 求证H必为G的正规子群 基础代数问题 设G为群 H为G的子群 H在G中指数为2 求证H必为G的正规子群 只要证明Ha=aH即可,其中a不如果一个点式一个指数函数与一个对数函数的公共点,那么称这个点为“好点”,在下列五个点E(1,1)F(1,2)G(2,1)H(2,2)P(2, 当X=1时,对数函数y=logax(a>0,a≠1)恒过(1,0)点,故E(1,1),F(1,2),一定不是好点,当Y=1时,指数函数y=ax(a>0,a≠1)恒过(0,1)点,故G(2,1)也一定不是好点,而H(2,2)是函数y=2x与y=log2x的交点;P(2,0.5)是函数y=12x与y=log4x的交点;故好点有2个,故选C.H-Index,G-Index分别是什么?反映了作者的什么? h指数(Hirsch index,h-index)=h指数是2005年由美国理论物理学家Jorge E.Hirsch提出的[1],所以按…
随机阅读
- 衡水下一站有到西安的高铁吗 从西安坐火车到天津都经过哪些地方
- 水冷壁爆管的原因有哪些? 5.水冷壁爆管现象及处理
- 使用金蝶系统如何进行固定资产卡片查询 金蝶固定资产卡片如何打印
- 《白夜行》中西本文代到底是怎么死的? 花匣子牛仔裤2015新款
- 跪求~迪奥女士钱包,有图片和地址最好,谢谢~ 男的用女式钱包图片和价格
- 一次一次又一次不小心,走进悲伤的森林。是哪首歌的歌词?
- 大海战2 法国防空炮 是炮手么???? 那我的 防空兵 没用了???? 大海战 法国 防空炮手 转职
- 贵州凉米线图片 陈村过桥米线
- 什么打印机适合打印卡片纸 喷墨打印机可以打卡片吗
- 东莞植物园~~~ 821经过东莞植物园吗
- 英语四级成绩没有过学校线,没有学位证了,现在有两个选择,是延期毕业还是认真复习指望最后两次四级考试 百分等级分数课本
- 鱼缸的绿丝藻怎么清除!!!! 如何去除水中的绿丝藻
- 走马镇的乡镇简介 走马街镇经济
- 坏男孩联盟成员谁最厉害 正义联盟成员的实力排名是什么?
- 元丰元年 诏封公昌黎伯 补写出陆游《书愤》这首诗中的空缺部分。(每空1分,共5分) 早岁那知世事艰, 。...
- 上海绿色干洗店怎么样 绿色干洗店怎么开?
- 韩国男团小幸运 求韩国男团的一些小短剧
- 长安曲韦曲街道办高望村选举,每个人发4000元。咋没人管 韦曲街道办土地所电话
- 做核磁注射钆喷酸葡胺注射夜,多久能... 钆喷酸葡胺注射过敏性高不高
- 灞桥区的行政区划 灞桥路家湾党支部