ZKX's LAB

根据数学期望方差的不同计算公式 数学期望与方差公式

2020-07-26知识22

数学期望和方差的关系? 方差=E(x2)-E(x)2,E(X)是数学期2113望5261。在概率论和统计学中4102,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘1653以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这就是将各个误差将之平方,相加之后再除以总数,透过这样的方式来算出各个数据分布、零散的程度。扩展资料:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。考虑到38种。请求高中数学方差、期望的公式? 期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn方差的公式:D=(X1-E)的平方*P1+(X2-E)的平方*P2+(X3-E)的平方*P4+.(Xn-E)的平方*Pn数学期望和方差的关系? 方差=E(x2)-E(x)2,E(X)是数学期望。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。。二项分布数学期望和方差公式, 1、二项分布求期望:公式:如果r~B(r,p),那么E(r)=np示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的期望。E(r)=np=4×0.25=1(个),所以这四道题目预计猜。二项分布数学期望和方差公式, 1、二项分布求期望:公式2113:如果5261r~B(r,p),那么E(r)=np示例:沿用上述猜4102小球在哪个箱子的例子,求猜对这四道题目的期望1653。E(r)=np=4×0.25=1(个),所以这四道题目预计猜对1道。2、二项分布求方差:公式:如果r~B(r,p),那么Var(r)=npq示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。Var(r)=npq=4×0.25×0.75=0.75扩展资料由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.设随机变量X(k)(k=1,2,3.n)服从(0-1)分布,则X=X(1)+X(2)+X(3).X(n).因X(k)相互独立,所以期望:方差:参考资料来源:-二项分布数学期望,方差的计算公式是? 原始数据:x1,x2,.,xnx 的数学期望:Ex=[∑(i=1->;n)xi]/n(1)x 的方差:D(x)=[∑(i=1->;n)(xi-Ex)2]/n(2)x 的方差:D(x)还等于:D(x)=x的均方值-x的均值Ex的平方(Ex)2,即:D(x)=[∑(i=1->;n)(xi)2]/n-(Ex)2(3)根据数学期望方差的不同计算公式 将第一个公式中括号内的完全平方打开得到DX=E(X^2-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2数学期望和方差的几个推广公式? 对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,他的分布列求数学期望和方差)有EX=np DX=np(1-p)n为试验次数 p为成功的概率对于几何分布(每次试验成功概率为P,一直试验到成功为止)有EX=1/P DX=p^2/q还有任何分布列都通用的DX=E(X)^2-(EX)^2

#随机变量#数学期望#数学#方差公式#方差计算公式

随机阅读

qrcode
访问手机版