ZKX's LAB

F分布的数学期望和方差 正态分布,标准正态分布他们的数学期望和数学方差是什么

2020-07-26知识11

概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布的期2113望:均匀分布的期望是取值区间5261[a,b]的中点(a+b)/2。均匀分4102布的方差:var(x)=E[X2]-(E[X])2var(x)=E[X2]-(E[X])2=1/3(a2+ab+b2)-1/4(a+b)2=1/12(a2-2ab+b2)=1/12(a-b)2若X服从[2,4]上的1653均匀分布,则数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3。扩展资料1、标准均匀分布若a=0并且b=1,所得分布U(0,1)称为标准均匀分布。标准均匀分布的一个有趣的属性是,如果u1具有标准均匀分布,那么1-u1也是如此。2、相关分布(1)如果X服从标准均匀分布,则Y=Xn具有参数(1/n,1)的β分布。(2)如果X服从标准均匀分布,则Y=X也是具有参数(1,1)的β分布的特殊情况。(3)两个独立的,均匀分布的总和产生对称的三角分布。参考资料来源:-均匀分布超几何分布的数学期望和方差怎么算 X H(n,M,N)例 N个球 有M个黑球 取 n个黑球则 EX=nM/NDX=nM/N*(1-M/N)*(N-n)/(N-1)其实可以和二项分布类比的.二项分布就是超几何分布的极限正态分布,标准正态分布他们的数学期望和数学方差是什么 0—1分布,数学期望p 方差p(1-p);二项分布(贝努里概型),数学期望np 方差np(1-p);泊松分布,数学期望λ 方差λ;均匀分布,数学期望(a+b)/2 方差[(b-a)^2]/12;指数分布。关于大学概率中各种分布的数学期望和方差求解 数学期望为4,方差为16/120(均匀分布公式)题目二,=2是卡方分布快采纳,否则懒得教你常见分布的数学期望和方差 常见的有正态分布,二项分布,指数分布,均匀分布正态分布N~(a,b)EX=a DX=b二项分布B~(n,p)EX=np DX=np(1-p)指数分布λ EX=λ分之一 DX=λ^2分之一均匀分布 在(a,b)之前的范围 EX=2分之a+b DX=(b-a)^2\\12概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布的数学期望是分布区间左右两端和的平均值,方差为分布区间左右两端差值平方的十二分之一。即,若X服从[a,b]上的均匀分布,则数学期望EX,方差DX计算公式分别为:对这道题本身而言,数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3扩展资料均匀分布在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。数学期望在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。均匀分布U(a,b)的数学期望和方差分别是 数学期望:E(x)=(a+b)/2方差:D(x)=(b-a)2/12超几何分布的数学期望和方差的算法 1、期望值2113计算公式:E(X)=(n*M)/N[其中x是样本数,5261n为样本容量,M为样本总数,N为总体4102中的个1653体总数],求出均值,这就是超几何分布的数学期望值。2、方差计算公式:V(X)=X1^2*P1+X2^2*P2+.Xn^2*Pn-a^2[这里设a为期望值]扩展资料:在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。在概率分布中,期望值和方差或标准差是一种分布的重要特征。在经典力学中,物体重心的算法与期望值的算法十分近似。当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。参考资料来源:-期望值-方差二项分布数学期望和方差公式, 1、二项分布求期望:公式2113:如果5261r~B(r,p),那么E(r)=np示例:沿用上述猜4102小球在哪个箱子的例子,求猜对这四道题目的期望1653。E(r)=np=4×0.25=1(个),所以这四道题目预计猜对1道。2、二项分布求方差:公式:如果r~B(r,p),那么Var(r)=npq示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。Var(r)=npq=4×0.25×0.75=0.75扩展资料由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.设随机变量X(k)(k=1,2,3.n)服从(0-1)分布,则X=X(1)+X(2)+X(3).X(n).因X(k)相互独立,所以期望:方差:参考资料来源:-二项分布

#方差公式#均匀分布#数学#数学期望#总体方差

随机阅读

qrcode
访问手机版