椭圆的参数方程怎么推导? 为什么设x=acosθ y=bsinθ?如果你知道圆的标准参数方程,那么椭圆的标准参数方程也就顺理成章了。我们回顾: 对单位圆:,其标准参数方程为: 则对椭圆: 。
近世代数中有一个叫什么青春之梦的定理 我想你说的是类域论中的 阿贝尔域上的克罗内克定理 吧 这个领域是近世代数的延伸 我也不了解 有所耳闻 只能跟你粘贴过来每个虚二次域K的极大阿贝尔扩域是将 K添加某种椭圆函数(这是双周期函数)在全部有理点处的取值而得到的域
方程与函数的关系与区别 一、关系32313133353236313431303231363533e4b893e5b19e31333431363037:方程与函数都是由代数式组成。几何含义上函数与方程存在着联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量是图像与X轴交点;从代数角度看,对应的自变量是方程的解。二、区别:1、意义不同:方程重在说明几个未知数之间的在数字间的关系。函数重在说明某几个自变量的变化对因变量的影响。2、求解不同:方程可以通过求解得到未知数的大小。特定的自变量的值就可以决定因变量的值。3、变换不同:方程可以通过初等变换改变等号左右两边的方程式。函数只可以化简,但不可以对函数进行初等变换。扩展资料:初等函数:初等函数是由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个解析式表示的函数。常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。即基本初等函数经过。