ZKX's LAB

氢产生的光谱图是怎样的

2021-04-07知识11

红外光谱是怎么产生的? 利用红外2113光谱对物质分子进行的分析和5261鉴定。将一束不同波长的红外射线照射到物质4102的分子上,某些特1653定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。

怎么看红外光谱图? 1,根据分子式2113计算不饱和度公式:不饱和度 Ω5261=n4+1+(n3-n1)/2 其中:n4:化合价为41024价的原1653子个数,n3:化合价为3价的原子个数,n1:化合价为1价的原子个数。2,分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;3,若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔:2200~2100 cm-1,烯:1680~1640 cm-1 芳环:1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);4,碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;5,解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。扩展资料:红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。通常将红外光谱分为三个区域:近红外区。

光子是什么? 光谱图成因(解释一下黑暗和彩色条纹是怎样产生 的)。 能级的能量与处在该能级的电子的动能和电势能有什么关系? 电磁辐射的量子,传递电磁相互作用的规范粒子,记为γ。其静质量为零,不带荷电,其能量为普朗克常量和电磁辐射频率的乘积,ε=hv,在真空中以光速c运行,其自旋为1,是玻。

#氢产生的光谱图是怎样的

随机阅读

qrcode
访问手机版