数学皇冠上的明珠指的是1742年6月7日德国数学家哥德巴赫提出的一个未经证明的数学猜想“哥德巴赫猜想”1966年我国数学家陈景润证明了“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积”通常简称为(1+2).而数学皇冠上的明珠就是哥德巴赫猜想,陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想.
什么是数学皇冠上的明珠 歌德巴赫猜想 歌德巴赫猜想 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:\"我的问题是这样。
陈景润摘取了“数学皇冠上的明珠”指的是什么? 摘取皇冠上的2113明珠哥德巴赫猜想自然科学的皇后是5261数学4102,数学的皇冠是数论。而哥德1653巴赫猜想,则是皇冠上那颗璀璨夺目的明珠。自从十八世纪中叶哥德巴赫提出这一猜想之后,无数的数学家都被这颗明珠发出的耀眼光彩所吸引,纷纷加入到摘采它的行列中去。然而却始终没有人能够成功。十八世纪过去了,没有人能证明它。十九世纪过去了,仍然没有人能证明它。历史进入了二十世纪,自然科学的发展日新月异,无数的科学堡垒被科学家们逐一攻克。到了本世纪的二十年代,哥德巴赫猜想开始有了一点进展。各国数学家迂回前进,逐渐缩小了包围圈。在这场世界范围内的世纪竞赛中,一位大家耳熟能详的中国人-陈景润,战胜了各国数学好手,获得了领先的殊荣。尽管哥德巴赫猜想还只是一个猜想,但是自从它被提出直至今日,仍然没有其它的科学高峰可以遮掩它的光芒。历史又到了世纪之交,即将翻开崭新的一页,而人类却仍然只能带着这个遗憾跨入二十一世纪。哥德巴赫猜想,究竟是怎样的难题呢?寻找最大的素数1,2,3,4,5,…,这些数称为正整数。在正整数中,能被2整除的数,如2,4,6,8,…,被称为偶数。不能被2整除的,如1,3,5,7,…,则被称为。