ZKX's LAB

正态分布已知数学期望求方差 求正态分布的数学期望

2020-07-26知识17

已知ax和b服从标准正态分布如何求期望和方差? 如果你想问的是求Y=aX+b的期望和方差,且X服从正态分布,那么当X~N(μ,σ)时,E(X)=μ,D(X)=σ2E(Y)=aE(X)+b=aμ+b,D(Y)=a2E(X)=a2σ2 解:当x~n(μ。正态分布中,期望已知,求方差的各种检验??? 急急!!! 若期望u已知,利用(Xi-u)/(方差)是标准正太的性质,那么它的平方属于塌方分布,在显著性水平条件下。即可找出其拒绝域!正态分布的期望和方差怎么求 不用二重积分的,可以有简单的办法的.设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,不太好打公式,你将就看一下.于是:e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了.(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u.(2)方差过程和求均值是差不多的,我就稍微略写一点了.对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证.正态分布的数学期望 E(x^4)x^4*1/√(2π)e^(-x^2/2)dx 积分区间(-∞,+∞)2∫x^4*1/√(2π)e^(-x^2/2)dx 积分区间(0,+∞)分步积分.2x^3*1/√(2π)e^(-x^2/2)+2/√(2π)∫3x^2*e^(-x^2/2)dx2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2/√(2π)∫3*e^(-x^2/2)dx积分区间(0,+∞)1/√(2π)∫e^(-x^2/2)dx=1/22/√(2π)∫3*e^(-x^2/2)dx=3*2*1/2=3而2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)利用罗必塔法则,lim2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)=0所以E(x^4)=3正态分布的期望和方差怎么求 设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2。于是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域。(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u。(2)方差过程和求均值是差不多的,我就稍微略写一点了。对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证。扩展资料:若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。在统计描述中,方差用来计算每一个变量(观察。求正态分布的数学期望 楼主的题目还是有问题,此题应该加上 X,Y相互独立的条件.你可以先求出Z的密度再来求期望,但会比较麻烦.相信楼主手里的教材上一定有这样一道题目的在本题相同的条件下求W=max(X,Y)的期望,答案为:1/根号下\\Pi;在此基础上可以有一个简单做法解楼主的问题:由X,Y相互独立且均服从标准正态分布,可以推出:X,—Y相互独立且也是均服从标准正态分布,而min(X,Y)=—max(—X,—Y),所以Emin(X,Y)=—Emax(—X,—Y)=—1/根号下\\Pi.

#正态分布#方差#统计学分布#dx#概率论

随机阅读

qrcode
访问手机版