关于向量相关性 当a=0时,行列式|α1,α2,α3,α4|=0,向量组线性相关当a≠0时,行列式|α1,α2,α3,α4|=a 1 1 11 a 0 01 0 a 01 0 0 aa-3/a 1 1 10 a 0 00 0 a 00 0 0 a(a-3/a)a^3=(a^2-3)a^2所以 a=±3 时向量组线性相关综上,当a=0,或 a=±3 时向量组线性相关什么叫向量组,及其相关性 向量组是由一组向量构成的,如向量组A:a1,a2,a3,…,am.其中a1,a2,a3,…,am均为向量.向量线性相关性的判定1)一个向量a是线性相关的充分必要条件是:a=0;2)两个向量是线性相关的充分必要条件是:它们对应的分量成比例.3)n个n维向量线性相关的充分必要条件是:由它们组成的n阶行列式为零.4)向量组 线性相关的充分必要条件是:向量组中至少有一个向量能由其余的m-1个向量线性表示.5)向量组 线性相关的充分必要条件是:由它构成的矩阵 的秩小于向量的个数m.6)若向量组 线性相关,则向量组 也线性相关.7)当m>n时,m个n维向量必线性相关.8)一个向量a线性无关的充分必要条件是:a≠0.9)两个向量是线性无关的充分必要条件是:它们对应的分量不成比例.10)n个n维向量线性无关的充分必要条件是:由它们组成的n阶行列式不等于零.11)向量组 线性无关的充分必要条件是:由它构成的矩阵 的秩等于向量的个数m.12)整组向量线性无关,则它们的任何部分组也线性无关.13)若r维的向量组线性无关,而在r维的向量组中的每个向量的后边添上一个分量,则r+1维的向量也线性无关.如何判断三个向量组的线性相关性 若三个向量组组成的矩阵的秩<向量个数,则线性相关。若三个向量组组成的矩阵的秩=向量个数,则线性无关。例如:1、写成矩阵形式,然后通过行变换,化为行最简形,得到矩阵怎样求一个向量组的线性相关性 对于给出具体数值的向量组.写成矩阵形式1,m=n时,detA=0,则线性相关,detA≠0,则线性无关2,m≠n,rankA=n,则线性无关rankA≠n,则线性无关向量相关性 呵呵 howshineyou 乱解这两个2113向量5261组分别是矩阵Aa11 a12…4102a1na21 a22…a2nas1 as2…asn的行列向量组所以两个向量组的秩是相同的1653,都等于矩阵的秩若 r(A),且 r(A)则两个向量组都线性相关若 r(A)=s,则 行向量组线性无关.当 n=s 时,列向量组也线性无关,否则线性相关.若 r(A)=n,与上同理考虑.两个长度不同的向量,如何在matlab中计算他们之间的互相关性 不需要两者长度相同呀,你是不是用行向量与列向量求互相关了,那是不行的.Header=[-1-1-1-1-1 1 1-1-1 1-1 1-1]x=randsrc(1,40)x(11:23)=HeaderxHxcov=xcorr(x,Header);figurestem(xHxcov)什么叫向量组,及其相关性:向量组是由一组向量构成的,如向量组A:a1,a2,a3,…,am.其中a1,a2,a3,…,am均为向量.向量线性相关性的判定?1.如何判断三个向量组的线性相关性? 例如:a1=[1 2 -1 4]T a 1、行列式=0时线性相关。2、系数行列式≠0时唯一解,=0无解或无穷多解。3、a=1。向量组的相关性: 相关组的接长未必线性相关比如(1,2),(2,4)线性相关而(1,2,1),(2,4,0)线性无关无关组的截短未必线性无关上例反过来看也就是定理的逆不成立如何判断三个向量组的线性相关性 若三个向量2113组组成的矩阵的秩<向量个数,则线性5261相关。若三个向量4102组组成的矩1653阵的秩=向量个数,则线性无关。例如:1、写成矩阵形式,然后通过行变换,化为行最简形,得到矩阵的秩。2、得出矩阵的秩,用来和向量个数比较。3、因为向量组组成的矩阵的秩小于向量个数,所以得出。所以线性相关就是:
随机阅读
- 不溶于盐酸的黑色沉淀 不溶于酸的沉淀有哪些 不溶于碱的沉淀有哪些
- 求带虎的四字成语?(越多越好) 驱羊攻虎有什么典故
- 苹果酸氯波必利片一般吃多久 苹果酸氯波必利片一天几次
- 无人机雷达侦察任务载荷 无人驾驶飞机的功能是什么?
- 槽开粗铣刀 什么是铣刀盘
- 请问大家,四川哪里有做凉粉用的优质豌豆粉卖,要有豌豆香味的,谢谢 豌豆粉那里出售
- 请问吉大小天鹅甲醛检测仪不吸气体是什么原因 吉大小天鹅甲醇检测
- 凝结水泵怎样排空气 凝结水泵为什么要装空气管
- 开式水循环系统怎么排气 开式冷却水系统与闭式冷却水系统的区别
- 善根结善缘,慈悲大无边,什么歌曲 佛歌清唱正月里
- 辰在什么样的情况下才为水墓?算命谢谢 辰为水之墓
- 哪里有关于本届U20世青赛的专题网站? 意大利u20赞比亚
- 放置江湖 旧皮腰带 皮腰带放置时间长不用会损害吗
- 云南省结石病医院挂号 肾结石做检查却没有但是还在疼
- 呼吸能量和水分多少钱 sum37呼吸时光能量怎么样?会不会油?水分惊喜哪个好?油皮
- 升降晾衣架怎样安装? 安升降衣架
- 王府锦苑的天然气费在哪交?是双流县兴能天然气有限公司的 双流航空港天然气缴纳
- 草莓退役去干什么 LOL草莓退役去哪了 草莓为什么会退役
- 关于古镇旅游的探析 城镇化背景下古镇的发展现状
- 北京地铁宋家庄站有多少个出口 宋家庄地铁最早