正三棱柱和直三棱柱和三棱柱的区别 一、性质不同1、正三棱柱:上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的棱柱,并且上下底面的中心连线与底面垂直,也就是侧面与底面垂直的棱柱。2、直三棱柱:各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。3、三棱柱:三棱柱是一种柱体,底面为三角形。正三棱柱是半正多面体、均匀多面体的一种。二、侧面不同1、正三棱柱:侧面是矩形。2、直三棱柱:侧面是正方形。3、三棱柱:侧面既有矩形,也有的是正方形。三、范围不同1、正三棱柱:只表示上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的三棱柱一种。2、直三棱柱:只表示各个侧面的高相等,底面是三角形,上表面和下表面平行且全等的三棱柱一种。3、三棱柱:包括了直三棱柱、正三棱柱。
直三棱柱与正三棱柱的区别和联系 直三棱柱包括正三棱柱直三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直与两底面的棱柱.正三棱柱是上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的棱柱,并且上下底面的中心连线与地面垂直.棱柱都有的性质(1)侧棱都相等,侧面是平行四边形;(2)两个底面与平行于底面的截面是全等的多边形;(3)过不相邻的两条侧棱的截面是平行四边形.而正棱柱特别就在于两个底面都是正三角形(等边三角形)
什么是正三棱柱,有什么性质? 正三棱柱bai是上下底面是全等du的两正三角形,zhi侧面是矩形,侧棱平dao行且相等的棱柱,并且上下底回面的中心答连线与底面垂直,也就是侧面与底面垂直。性质:1、上下底面全等的正三角形,侧面是矩形,侧棱平行且相等;2、上下底面的中心连线与底面垂直;3、正三棱柱不一定有内切球:若正三棱柱有内切球,则正三棱柱的高一定是球的直径,此时正三棱柱的棱长为底面边长的(根号3)/3倍;4、正三棱柱一定有外接球:但直径一定不是正三棱柱的高,直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长。扩展资料:1、三棱柱不一定有内切球:若正三棱柱有内切球,则正三棱柱的高一定是球的直径,此时正三棱柱的棱长为底面边长的(根号3)/3倍;2、正三棱柱一定有外接球:但直径一定不是正三棱柱的高,直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长。体积为:V=SH参考资料:—正三棱柱