正三棱锥的内切球与外接球怎么求 内切球的球心到各面的距离是相等的,球心和各面可以组成四个等高的三棱锥,那么内切球的半径R,乘以正三棱锥的表面积就等于它的体积.外接球的球心到各定点的距离是相等的,球心就一定在各棱的中垂面上.由题设,易知,三条侧棱和侧棱上的三个中垂面构成一个边长为侧棱长的1/2的立方体,外接球半径即为立方体的对角线长,也就是√3/2侧棱长.
正三棱锥的内切球半径如何求 公式:正三棱锥它的体积可2113以分为三5261个等体积的三棱锥,4102即三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C',因为三棱柱的侧面A'ABB'是平行四边形,所以△A'AB的面积=△A'BB'的面积,即其中三棱锥C-A'AB与三棱锥C-A'B'B的底面积相等,它们两个的顶点都是C,即C到它们底面的距离都相等。所以三棱锥C-A'AB与三棱锥C-A'B'B的体积相等。而三棱锥C-A'B'B也可以看作是三棱锥A'-BCB',且三棱锥A'-CB'C'与三棱锥A'-BCB'的底面积相等(即△BCB'与△B'C'C的面积相等),且它们两个的顶点都是A',即A'到它们底面的距离都相等。所以三棱锥A'-CB'C'与三棱锥A'-BCB'的体积也相等,故三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'的体积都相等,由此可见,一个三棱柱的体积等于三个等体积的三棱锥体积之和,即V三棱锥=1/3S·h.2三棱锥公式。扩展资料性质:1、底面是1653等边三角形。2、侧面是三个全等的等腰三角形。3、顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。4、斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)5、高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)6、高、侧棱、侧棱射影构成的直角三角形;(含侧棱。
一道立体几何方面的问题 一定有的.给你证明方法吧:1、正三棱锥的外接球半径求法:设A-BCD是正三棱锥,侧棱长为a,底面边长为b,则外接球的球心一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交.