倒格子的性质 1.倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。2.由倒格子的定义,不难得到下面的关系ai·bj=2 π δij3.设三维倒格子与正点阵(格子)中的位置矢量分别为G=α b1+β b2+γ b3R=η a1+θ a2+λ a3(α,η,β,θ,γ,λ皆为整数)不难证明G·R=2π(αη+βθ+γλ)=2π n,其中n为整数。4.设三维倒格子原胞体积为 ψ,正格子原胞体积为 v,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到 ψ v=(2 π)^3.5.正格子晶面族(αβγ)与倒格子矢量 G=α b1+β b2+γ b3 正交(具体的内容及证明过程,请参考文献[1])
设原胞基矢a1,a2,a3相互正交,求倒格子基矢.在什么情况 假定晶格点阵基矢a1、a2、a3(1、2、3表示 a 的下标,粗体字表示 a1 是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义 b1=2 π(a2×a3)/ν b2=2 π。
倒格子的倒格子引入的意义 这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。例如,晶体的衍射是由于某种波和晶格互相作用,与一族晶面发生干涉的结果,并在照片上得出一点,所以,利用倒格子来描述晶格衍射的问题是极为直观和简便的。另外,在固体物理中比较重要的 布里渊区,也是在倒格子下定义的。相关的内容可以参考文献[1-2]。