如何检验一组数据是否符合正态分布 1 方法 性质1:设X是一个随机变量,其分布函数为F(x),则Y=F(X)服从在〔0,1〕的均匀分布。性质2:设X1,K,Xn是某个分布的一个简单样本,其分布函数为F(x),由性质1可知,在。
如何在SPSS中对样本进行正态分布检验? 一、图示法21131、P-P 图 以样本的累计频5261率作为横坐标以安装正态4102分布计算的相应累1653计概率作为纵坐标把样本值表现为直角坐标系中的散点。如果资料服从整体分布则样本点应围绕第一象限的对角线分布。2、Q-Q 图 以样本的分位数作为横坐标以按照正态分布计算的相应分位点作为纵坐标把样本表现为指教坐标系的散点。如果资料服从正态分布则样本点应该呈一条围绕第一象限对角线的直线。以上两种方法以 Q-Q 图为佳效率较高。3、直方图 判断方法是否以钟形分布同时可以选择输出正态性曲线。4、箱式图 判断方法观测离群值和中位数。5、茎叶图 类似与直方图但实质不同。二、计算法1、偏度系数Skewness和峰度系数Kurtosis 计算公式 g1表示偏度 g2表示峰度 通过计算 g1 和 g2 及其标准误 σg1及 σg2然后作 U检验。两种检验同时得出 U0.05 的结论时才可以认为该组资料服从正态分布。由公式可见部分文献中所说的“偏度和峰度都接近 0…可以认为…近似服从正态分布”并不严谨。2、非参数检验方法 非参数检验方法包括 Kolmogorov-Smirnov 检验 D 检验 和 Shapiro-Wilk W 检验。SAS 中规定当样本含量 n≤2000时结果。
假设某一样本符合正态分布 一般最小样本量为多少呢 最小样本量为4组。无论是否独立,无论参数是否相同,正态分布的随机数相加必然还是正态分布。有一组X1,X2,.,Xn是一组独立同分布的样本,服从正态分布;而Y1,Y2,.,Yn是另一组独立同分布的样本,服从另一个正态分布。那么X1+Y1,.,Xn+Yn必然也服从某种正态分布。X1+Y1,X2+Y2,.之间是独立的。X1与Y2,.,Yn都是独立的,以此类推。在这样的情况下,可以保证X1+Y1,.,Xn+Yn也是一组独立同分布的样本,服从某个正态分布。扩展资料:正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。参考资料来源:-正态分布