ZKX's LAB

对我国古代数学成就天元术的发展作出重要贡献的是 我国古代数学成就天元术的主要贡献者是

2021-04-05知识7

对我国古代数学成就天元术的发展作出重要贡献的是李治。天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。扩展资料:谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题解决了。随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》。

谈谈中国古代的数学成就 1、等间距二次内插公式。2113公元5261600年,隋代刘焯在制订《皇极历》时,在世界上最4102早提出1653了等间距二次内插公式,唐代僧一行在其《大衔历》中将其发展为不等间距二次内插公式。2、测量太阳高度。陈子是周代的天文算学家,荣方是当时天文算学家的爱好者。陈子测量:太阳高度的方法可叙述为:当夏至太阳直射北回归线时,在北方立一8尺高的标竿,观其影长为6尺。3、勾股定理。据《周髀算经》记载,“故折矩以为句广三,股 四,径隅五。既方其外,半之者,此数之所由生也。去,政页井盘、得三、四、五。两矩共长二十有五,是调积绝。4、割圆术。所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。5、圆周率。魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π 的近似值3.1416。扩展资料:1、在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).2、算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数。

中国古代的数学成就 《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统。

#我国古代数学成就天元术的主要贡献者是

随机阅读

qrcode
访问手机版