ZKX's LAB

离散函数的协方差 数学期望与方差的关系

2021-04-05知识4

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程…

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。扩展资料:若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个。

二元连续型随机变量的协方差中的E(X)E(Y)怎么求?有联合概率密度函数. E(X)就是X的平均值你就想成你每次考试,比如2次考100,一次0分,一共3次,就是(2/3)*100+(1/3)*0=66.6分密度函数设成f(x,y)就相当于上文(2/3),(1/3)积分就是求非常多个小东西的和,只不过这些东西是有实数那么多,求和就是离散的和,一般是有限个东西的和,最多就是整数那么多个和,不要把积分想的很神圣(重积分)x*f(x,y)就是E(X)(重积分)y*f(x,y)就是E(Y)(重积分)xy*f(x,y)就是E(XY)

#离散函数的协方差

随机阅读

qrcode
访问手机版