ZKX's LAB

锥约束优化 为什么凸优化这么重要?

2021-04-05知识6

凸分析与优化的前言 本书针对最优化问题介绍凸分析方法。第1章介绍凸集、凸函数、上境图、凸包、仿射包、相对内点、回收锥等凸分析的基本概念及其相关性质;第2章讨论凸性在最优化问题中的基本作用,介绍最优解集的存在性定理、投影定理、凸集分离定理、极小公共点与极大交叉点对偶问题以及一般性的极小极大定理和鞍点定理;第3章讨论凸集为多面体的情况,介绍线性Farkas引理、凸多面体的Minkowski Weyl表示定理、线性规划的基本定理、凸多面体的极小极大定理以及非线性Farkas引理;第4章介绍方向导数、次梯度、次微分、切锥、法锥等基本概念及其相关性质,给出Danskin定理和抽象可行集描述的约束优化问题最优性条件;第5章讨论由抽.

为什么凸优化这么重要? 觉得有必要写在前面的话:本答案主要面向运筹学、管理科学、运营管理、工业工程、系统工程等相关专业的以…

最优化方法的内容简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。《最优化方法》可用作高等院校数学系高年级本科生和管理专业研究生的教材,也可作为相关工程技术人员的参考用书。

#锥约束优化

随机阅读

qrcode
访问手机版