ZKX's LAB

椭圆函数方程ppt 常见函数的参数方程有那些?

2021-04-05知识10

椭圆参数方程的切线函数 怎么求 设椭圆的参数方程为x=acost,y=bsint,(t为参数),则dx=-asintdt,dy=bcostdt,dy/dx=(-b/a)cott.椭圆的切线方程为y-bsint=(-b/a)cott*(x-acost),即bxcost+aysint-ab=0.

求圆,椭圆,抛物线,双曲线的标准方程,及其参数方程. 圆与椭圆均为封闭曲线,二者标准方程为x^2/a^2+y^2/b^2=1对于圆:a=b>;0对于椭圆a^2=b^2+c^2(c为焦半距)a>;b>;0,a>;c>;0.b,c大小关系不确定.双曲线标准方程为x^2/a^2-y^2/b^2=1满足a^2+b^2=c^2(c为焦半距)c>;a>;0,c>;b>;0.a,b大小关系不确定抛物线标准方程为四类:y^2=2px(p>;0)(焦点在x轴正半轴上)y^2=-2px(p>;0)(焦点在x轴负半轴上)x^2=2py(p>;0)(焦点在y轴正半轴上)x^2=-2py(p>;0)(焦点在y轴负半轴上)参数方程等会上椭圆X=a cosxy=b sinx双曲线:x=a*secθy=b*tgθ抛物线:x=2p*t^2y=2p*t椭圆可用三角函数来建立参数方程椭圆:x^2/a^2+y^2/b^2=1椭圆上的点可以设为(a·cosθ,b·sinθ)相同的有:双曲线:x^2/a^2-y^2/b^2=1双曲线上的点可以设为(a·secθ,b·tanθ)因为(secθ)^2-(tanθ)^2=1抛物线:y^2=2p·x则抛物线上的点可设为(2p·t^2,2p·t)相应的,如果抛物线是:x^2=2p·y则抛物线上的点可设为(2p·t,2p·t^2)你的名字我喜欢

椭圆方程的求导 设椭圆方程是x^2/a^2+y^2/b^2=1两边对知x求导有2x/a^2+2yy'/b^道2=0y'=-xb^2/(a^2y)因为求导表示的是切线斜率简单来说,假设某回点(x0,y0)在椭圆上那么过这答点的椭圆切线斜率为k=-x0b^2/(y0a^2)过这点的切线方程是:y-y0=-x0b^2/(y0a^2)(x-x0)整理得xx0b^2+yy0a^2=y0^2a^2+x0^2b^2=a^2b^2即 过点(x0,y0)的切线方程是xx0/a^2+yy0/b^2=1

#椭圆的参数方程ppt#椭圆函数方程ppt#椭圆的标准方程ppt课件#椭圆的方程是函数吗

qrcode
访问手机版