ZKX's LAB

什么被称为数学皇冠上的明珠 被誉为数学界皇冠上的明珠是什么猜想?

2021-04-04知识6

被誉为数学界皇冠上的明珠是什么猜想? 哥德巴赫猜想

数学皇冠上的明珠指的是什么 “数学王2113冠上的明珠”指的是5261哥德巴赫猜想。哥德巴赫猜想:1742年6月7日,德4102国数学家哥德巴1653赫在写给著名数学家欧拉的一封信中,提出了一个大胆的猜想:任何不小于3的奇数,都可以是三个质数之和(如:7=2+2+3,当时1仍属于质数)。同年,6月30日,欧拉在回信中提出了另一个版本的哥德巴赫猜想:任何偶数,都可以是两个质数之和(如:4=2+2。当时1仍属于质数)。这就是数学史上著名的“哥德巴赫猜想”。显然,前者是后者的推论。因此,只需证明后者就能证明前者。所以称前者为弱哥德巴赫猜想(已被证明),后者为强哥德巴赫猜想。由于现在1已经不归为质数,所以这两个猜想分别变为:任何不小于7的奇数,都可以写成三个质数之和的形式;任何不小于4的偶数,都可以写成两个质数之和的形式。扩展资料:哥德巴赫猜想证明误区:研究哥德巴赫猜想的四个途径分别是:殆素数,例外集合,小变量的三素数定理,以及几乎哥德巴赫问题。殆素数就是素因子个数不多的正整数。现设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和,即N=A+B,其中A和B是素因子个数都不太多殆素数。用“a+b”来表示如下命题:每个大偶数N都可表为A+B,。

陈景润摘取数学皇冠上的明珠指的是什么?要写一段话。_百度知道 大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和’,简称1+1.他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题.欧拉接到信后,就着手计算.他费尽了脑筋,直到离开人世,也没有证明出来.之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题.200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”.打一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的宝石。

#什么被称为数学皇冠上的明珠

随机阅读

qrcode
访问手机版